Polyspace® Products for C/C++
Getting Started Guide

<} MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Polyspace® Products for C/C++ Geiting Started Guide
© COPYRIGHT 1997-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013

First printing
Second printing
Third printing
Online only
Online only
Fourth Printing
Fifth Printing
Online only
Online only
Online only
Online only

Revised for Version 5.1 (Release 2008a)
Revised for Version 6.0 (Release 2008b)
Revised for Version 7.0 (Release 2009a)
Revised for Version 7.1 (Release 2009b)
Revised for Version 7.2 (Release 2010a)
Revised for Version 8.0 (Release 2010b)
Revised for Version 8.1 (Release 2011a)
Revised for Version 8.2 (Release 2011b)
Revised for Version 8.3 (Release 2012a)
Revised for Version 8.4 (Release 2012b)
Revised for Version 8.5 (Release 2013a)

Introduction to Polyspace Products for
Verifying C/C++ Code

Product Description 1-2
Polyspace Client for C/C++, 1-2
Polyspace Server for C/C++, 1-2

Polyspace Verification 1-4
Overview of Polyspace Verification 1-4
The Value of Polyspace Verification 1-4

Product Components 1-7
Polyspace Verification Environment 1-7
Other Polyspace Componentscccovvvuu.... 1-10

Install Polyspace Products 1-12
Find the Installation Instructions 1-12
Obtain Licenses for Polyspace Software 1-12

Polyspace Software Workflow and Tutorials 1-13
Basic Workflow i 1-13
Tutorials ... e 1-14

Additional Information and Support 1-16
ProductHelp 1-16
MathWorks Online iiiiinnnn.. 1-16

Related Products i, 1-17
Polyspace Products for Verifying Ada Code 1-17

Polyspace Products for Linking to Models 1-17

vi

Contents

Set Up a Polyspace Project

2

Set Up Polyspace Project 2-2
Tutorial OvVerviewoueiviueennnennnnennns 2-2
What Is a Project? 2-2
Prepare Project Folders 2-3
Open Polyspace Verification Environment 2-4
Create a New Project to Verify the Example C File 2-6

Run a Verification

3

Run Verification 3-2
Tutorial Overviewc..oiiiiiineeennnnnnnnn 3-2
Before You Start the Tutorial 3-3
Prepare for Verification 3-3
Start Server Verification from Project Manager 3-9
Start Client Verification from Project Manager 3-20

Review Verification Results

q

Review Verification Results 4-2
Tutorial Overviewc.coiiiiieeeenennnnnnnnn 4-2
Before You Start 4-2
Open Verification Results 4-3
Explore Results Manager perspective 4-3
Review Results i, 4-7
Review Results Systematically 4-23
Automatically Test Unproven Code 4-28
Generate Reports of Verification Results 4-28

Check Compliance with Coding Rules

5

Check Compliance with Coding Rules 5-2
Tutorial OvVerviewoueiviueennnennnnennns 5-2
Before You Start i, 5-3
Create New Module for Coding Rules Checking 5-3
Set MISRA C Checking Option 5-10
Select Coding Rules to Check 5-11
Exclude Files from MISRA C Checking 5-14
Run a Verification with Coding Rules Checking 5-15
Examine MISRA C Violations 5-16
Open MISRA-CReportcciiiiiiinnnnn.. 5-19

Index

vii

Contents

o
ol

Introduction to Polyspace
Products for Verifying

C/C++ Code

e “Product Description” on page 1-2

e “Polyspace Verification” on page 1-4

® “Product Components” on page 1-7

e “Install Polyspace Products” on page 1-12

® “Polyspace Software Workflow and Tutorials” on page 1-13
e “Additional Information and Support” on page 1-16

¢ “Related Products” on page 1-17

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Product Description

In this section...

“Polyspace Client for C/C++” on page 1-2

“Polyspace Server for C/C++” on page 1-2

Polyspace Client for C/C++
Prove the absence of run-time errors in source code

Polyspace® Client™ for C/C++ provides code verification that proves the
absence of overflow, divide-by-zero, out-of-bounds array access, and certain
other run-time errors in source code using static code analysis that does not
require program execution, code instrumentation, or test cases. Polyspace
Client for C/C++ uses formal methods-based abstract interpretation
techniques to verify code. You can use it on handwritten code, generated code,
or a combination of the two, before compilation and test.

Support for industry standards is available through IEC Certification Kit (for
ISO 26262 and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features

¢ File- and class-level software component verification
® Formal method based abstract interpretation
¢ Display of run-time errors directly in code

e MISRA-C:2004, MISRA-C++:2008, and JSF++ coding standard
enforcement, with direct source file links

® Cyclomatic complexity and other code metrics

e Eclipse™ and Microsoft® Visual Studio® IDE integration

Polyspace Server for C/C++
Perform code verification on computer clusters and publish metrics

Polyspace Server™ for C/C++ provides code verification that proves the
absence of overflow, divide-by-zero, out-of-bounds array access, and certain

http://www.mathworks.com/products/iec-61508
http://www.mathworks.com/products/do-178

Product Description

other run-time errors in source code. For faster performance, Polyspace Server
for C/C++ lets you schedule verification tasks to run on a computer cluster.
Jobs are submitted to the server using Polyspace Client for C/C++. You can
integrate jobs into automated build processes and set up e-mail notifications.
You can view defects, regressions, and code metrics via a Web browser. You

then use the client to download and visualize verification results.

Support for industry standards is available through IEC Certification Kit (for

ISO 26262 and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features

® Web-based dashboard providing code metrics and quality status

Automated job scheduling and e-mail notification
Multi-server job queue manager

Accelerated performance on multicore servers
Verification report generation

Mixed operating system environment support

1-3

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/do-178/

Introduction to Polyspace® Products for Verifying C/C++ Code

1-4

Polyspace Verification

In this section...

“Overview of Polyspace Verification” on page 1-4

“The Value of Polyspace Verification” on page 1-4

Overview of Polyspace Verification

Polyspace products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed.

To verify the source code, you set up verification parameters in a project, run
the verification, and review the results. A graphical user interface helps you
to efficiently review verification results. Results are color-coded:

® Green — Indicates code that never has an error.

¢ Red — Indicates code that always has an error.

® Gray — Indicates unreachable code.

U — Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors and find the exact

location of an error in the source code. After you fix errors, you can easily run
the verification again.

The Value of Polyspace Verification

Polyspace verification can help you to:

¢ “Enhance Software Reliability” on page 1-4
® “Decrease Development Time” on page 1-5

® “Improve the Development Process” on page 1-6

Enhance Software Reliability

Polyspace software ensures the reliability of your C and C++ applications by
proving code correctness and identifying run-time errors. Using advanced

Polyspace® Verification

verification techniques, Polyspace software performs an exhaustive
verification of your source code.

Because Polyspace software verifies all possible executions of your code, it
can identify code that:

e Never has an error

Always has an error

Is unreachable

Might have an error

With this information, you know how much of your code is free of run-time
errors, and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification
software to check that your code complies with established coding standards,
such as the MISRA C®, MISRA® C++ or JSF++ standards.’

Decrease Development Time

Polyspace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process. However, using it during early
coding phases allows you to find errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

Color coding of results helps you to quickly identify errors. You spend less
time debugging because you can see the exact location of an error in the
source code. After you fix errors, you can easily run the verification again.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-5

Introduction to Polyspace® Products for Verifying C/C++ Code

1-6

Using Polyspace verification software helps you to use your time effectively.
Because you know the parts of your code that do not have errors, you can
focus on the code with proven or potential errors.

Reviewing code that might have errors (orange code) can be time consuming,
but Polyspace software helps you with the review process. You can use filters
to focus on certain types of errors or you can allow the software to identify the
code that you must review.

Improve the Development Process

Polyspace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

Polyspace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.
® Quality assurance engineers can check overall reliability of an application.

¢ Managers can monitor application reliability by generating reports from
the verification results.

Product Components

Product Components

In this section...

“Polyspace Verification Environment” on page 1-7

“Other Polyspace Components” on page 1-10

Polyspace Verification Environment

The Polyspace verification environment (PVE) is the graphical user interface
of the Polyspace Client for C/C++ software. You use the Polyspace verification
environment to create Polyspace projects, start verifications, and review
verification results.

The Polyspace verification environment consists of two perspectives:
® “Project Manager Perspective” on page 1-7

e “Results Manager Perspective” on page 1-9

Project Manager Perspective

The Project Manager perspective allows you to create projects, set verification
parameters, and start verifications.

1-7

Introduction to Polyspace® Products for Verifying C/C++ Code

Specify source files and
include folders

File Edit Run
‘ f pelszan|e

Review Options Window Help

Set target and specify
verification options

B Run ¥ ’ Batch

“" Project Browser

" | | -@"Search: - Q ‘

tun @ stop |@ Create new result folder Use result folder: Result 3 -

+ASR | r ¢ @A

£ Configuration

&5 Demo C [C]
EfElexample project [C]
EHES Source

B+ sources
Include

=22 Module 1

. B+ Source

|| BE sources

| E+E3 Configuration

- M example_project
3 Result
Module_2

= Module_3

5 Demo_Cpp [C++]

example_project

Machine Configuration

=+ Target & Compiler

i~ Macros

' Environment Settings
Coding Rules & Code Metrics
- Verification Mode
= Inputs & Stubbing
(= Verification Assumptions
' Checks Behavior
-Precision

- Scaling
Post Verification
~Reporting

Machine Configuration

Host Machine Configuration

Send to Polyspace Server

[] Add to results repesitory

Extra Settings

Non-official options

Number of processes for multiple CPU core systems

% .| Ready

'E% Full Lugl [Verification Statistics| E Progress Monrtorl Output Summary

Monitor progress and view logs

You use the Project Manager perspective in the tutorial “Set Up Polyspace
Project” on page 2-2.

Product Components

Results Manager Perspective
The Results Manager perspective allows you to review:

¢ Results from the Polyspace coding rules checker to verify compliance with
established coding standards.

® Verification results, comment individual checks, and track review progress.

Check details Review Statistics

File Edit Run Review Options Window Help

‘EE@H") ("|¥%E‘%|0 @"|Seardu: + | 2 [] case fensitve[] Whole word |Eprm=ctnanager L Results Manager
.l“—! ,..[Memrmlngymc v]5’44 P S
* iew Statistics
- ‘ nerz :} ’v‘r Eiv Ev‘r va ﬁ' i’m example.c [Pointer_Arithmetic| | Coding review progress. Count Progress
) . Red IDP justified / to justify [0/1 0
Procedural entities x| #| || ue c 104 ¥p = * Qut of bounds *
! = P ’ of bounds */ ‘ Red justified / to justify /5 0
~ NIVL1 1| 84 | | 1DP.5 Error : pointer is outside its bounds Gray justified / to justify 0/s i
" OVFL2 1| 94 |3 dereference of local variable ‘p' (pointer to int 32, size: 32 bits): Orange justified / to justify /18 0
o IDP.3 i | es pointer is not nul Software reliabiity indicator ~ |259/294 88|
points to 4 bytes at offset 400 in buffer of 400 bytes, so s outside bounds
' MIF.4 1] 96 | may point to variable or field of variable in: {Painter_Arithmetic:array}
 MIP.5 1| 97
7 MISRAC17.4 1 97
IRV 1| 00 | B Review statstics | ¥ Chedk Review |
1| 102
a ; Source B Call Fierarchy
1 104 | | [r—
b example c | 4bvE
' NIF.3 1| 104]
-3 UNR.10 1 107 4 Calls
og)
[— 1| 1z - Erample Fointer Arihretio] -
 NIVL14 1] 114 ¥ pst_stubs_0.get_bus_status E
100 if(get_bus_status() > 0) [N
" NIP.16 1| 11a | 4 — - - ‘example.get_oil_pressure
o NIVLAT 1| 114 Lol { P pst_stubs_O.get_bus_status -
3 N 10z if(get oil pressure() » 0} 1« T I »
-7 MISRAC17.4 1 14 | 2 103 [: —
- 1| e | - § = Variable Access
Ll 104 Fp = & /* Out of bounds */
¥ NIVL.18 1| 1e | - 105 3 G w3
o NIP.20 1 e |- 106 else Variables
b NIVL.21 1] 18 | - 107 I "
¥ MISRAC17.4 1 18 | - 108 i+ [initislisstions.sm =)
+ IDP.22 1 me | || 109 ¥ [initislisstions.curent_dsta
« [| 3 110 1]| initi first_psilosd -
{-3- Results Explorer I - Results Summaryl 111 ~ || ¢ |=ma] 3
| % | MIVL.1 Details: Local variable is initialized (type: int 32)
Run-time checks and
i ialati Source code i i
coding rule violations Variable acess Call hierarchy

1 Introduction to Polyspace® Products for Verifying C/C++ Code

You use the Results Manager perspective in the tutorials in “Check
Compliance with Coding Rules” on page 5-2 and “Review Verification Results”
on page 4-2.

Other Polyspace Components

In addition to the Polyspace verification environment, Polyspace products
provide several other components to manage verifications, improve
productivity, and track software quality. These components include:

e Polyspace Queue Manager Interface (Spooler)

® Polyspace Metrics Web Interface

Polyspace Queue Manager Interface (Polyspace Spooler)

The Polyspace Queue Manager (also called the Polyspace Spooler) is the
graphical user interface of the Polyspace Server for C/C++ software. You
use the Polyspace Queue Manager Interface to move jobs within the queue,
remove jobs, monitor the progress of individual verifications, and download

results.
Polyspace Queue Manager Interface E\@
Operations Help
D Author Application Results folder CPU Status Date Language

----- 23 |username |example_project |C:\PolySpace\polyspace _project\verification_1\Result_9 |AH-SRUNS... |completed [15-Dec-2010, 16:03:33 (C
‘ ISErname EXample_proje Fo pace\polyspace_proje erificatio =% 0 A g D 010, 16:0

25 |username |example_project |C:\PolySpace'polyspace_project\Verification_1'Result_11 queued 15-Dec-2010, 16:03:21 (C

Connected to Queue Manager AH-SRUNSTRO.dhcp.mathworks.com User mode

You use the Polyspace Queue Manager in the tutorial “Start Server
Verification from Project Manager” on page 3-9.

Polyspace Metrics Web Interface

Polyspace Metrics is a web-based tool for software development managers,
quality assurance engineers, and software developers. Polyspace Metrics

1-10

Product Components

allows you to evaluate software quality metrics, and monitor changes in code
metrics, coding rule violations, and run-time checks through the lifecycle
of a project.

For information on using Polyspace Metrics, see “Quality Metrics”.

1-11

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Install Polyspace Products

In this section...

“Find the Installation Instructions” on page 1-12

“Obtain Licenses for Polyspace Software” on page 1-12

Find the Installation Instructions

The tutorials require Polyspace Client for C/C++ and Polyspace Server for
C/C++. Instructions for installing Polyspace products are in “Software
Installation”. Before installing Polyspace products, you must obtain the
required licenses.

Obtain Licenses for Polyspace Software

For information about obtaining licenses for Polyspace products, see “License
Administration”.

1-12

Polyspace® Software Workflow and Tutorials

Polyspace Software Workflow and Tutorials

In this section...

“Basic Workflow” on page 1-13

“Tutorials” on page 1-14

Basic Workflow

The following graphic shows the basic workflow for using Polyspace software
to verify source code.

Set up project

A4

Verify code

A 4

3
Review verification results

In this workflow, you:

1 Use the Project Manager perspective to set up a project file.

2 Verify code on a server or client.

You can use the Project Manager perspective to start the verification or
you can select files from a Microsoft Windows® folder and send them to
Polyspace software for verification. For verifications that run on a server,
you use the Polyspace Queue Manager Interface (Polyspace Spooler) to
manage the verification and download the results to a client. You can set an
option to check coding rules compliance in the first stage of the verification.

1-13

Introduction to Polyspace® Products for Verifying C/C++ Code

3 Use the Results Manager perspective to review verification results.

Tutorials
The tutorials guide you through the basic workflow, including the different

options for running verifications. The following graphic shows the workflow

that you follow in these tutorials.

Create new project

Review verification results

A 4

4
Check MISRA C compliance

In this workflow, you:
1 Create a new project that you use for the workflow.
See “Set Up Polyspace Project” on page 2-2.

2 Verify a single C file.

See “Run Verification” on page 3-2. In this tutorial, you verify the same file
using three different methods of running a verification:

e Start a verification that runs on a server using the Project Manager

perspective.

1-14

Polyspace® Software Workflow and Tutorials

e Start a verification that runs on a client using the Project Manager
perspective.

3 Review the verification results.
See “Review Verification Results” on page 4-2.

4 Modify the project to include MISRA C checking and review the MISRA C
violations in the example file.

See “Check Compliance with Coding Rules” on page 5-2.

1-15

1 Introduction to Polyspace® Products for Verifying C/C++ Code

Additional Information and Support

In this section...

“Product Help” on page 1-16
“MathWorks Online” on page 1-16

Product Help

To access Polyspace online Help, select Help > Help .

To access the online documentation for Polyspace products, go to:
www.mathworks.com/help/polyspace_c

MathWorks Online

For additional information and support, go to:

www.mathworks.com/products/polyspace

1-16

http://www.mathworks.com/help/polyspace_c/index.html
http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

Related Products

Related Products

In this section...

“Polyspace Products for Verifying Ada Code” on page 1-17

“Polyspace Products for Linking to Models” on page 1-17

Polyspace Products for Verifying Ada Code

For information about Polyspace products that verify Ada code, go to:
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
Polyspace Products for Linking to Models

For information about Polyspace products that link to models, go to:
http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

1-17

http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to Polyspace® Products for Verifying C/C++ Code

1-18

Set Up a Polyspace Project

2 st Up a Polyspace® Project

Set Up Polyspace Project

In this section...

“Tutorial Overview” on page 2-2
“What Is a Project?” on page 2-2
“Prepare Project Folders” on page 2-3

“Open Polyspace Verification Environment” on page 2-4

“Create a New Project to Verify the Example C File” on page 2-6

Tutorial Overview

Before you can run a verification of your source code, you must have a project.
In this tutorial, you create the project that you use to run verifications in
later tutorials.

What Is a Project?

In Polyspace software, a project is a named set of parameters for verification
of your software project source files. A project includes:

Source files

Include folders

® One or more Configurations, specifying a set of analysis options

® One or more Modules, each of which include:

= Source (specific versions of source files used in the verification)

= Configuration (specific set of analysis options used for the verification)
= Verification results

You can create your own project or use an existing project. You create and
modify a project using the Project Manager perspective.

In this tutorial, you create a new project and save it as a configuration file
(.cfg).

2-2

Set Up Polyspace® Project

Prepare Project Folders

Before you start verifying a C file with Polyspace software, you must know
the locations of the C source file and the include files. You must also know
where you want to store the verification results.

For each project, you decide where to store source files and results. For
example, you can create a project folder, and then in that folder, create
separate folders for the source files, include files, and results.

For this tutorial, prepare a project folder as follows:

1 Create a project folder named polyspace_project.

2 Open polyspace_project, and create the following folders:
® sources

e includes

3 Copy the file example.c and single file_analysis.c from
Polyspace_Install\polyspace\examples\cxx\Demo_C_Single-File\sources
to
polyspace_project\sources
Polyspace Install is the installation folder.

4 Copy the files include.h, math.h, single_file_analysis.h and
single_file_private.h from

Polyspace_Install\polyspace\examples\cxx\Demo_C Single-File\sources
to

polyspace_project\includes.

2 st Up a Polyspace® Project

2-4

Open Polyspace Verification Environment

You use the Polyspace verification environment to create projects, start
verifications, and review verification results.

To open the Polyspace verification environment:

1 Double-click the Polyspace icon (Windows systems).

Note On a Linux® or UNIX® system, use the following command:

/usr/local/Polyspace/PVE/bin/polyspace

2 If you have only Polyspace Client for C/C++ software installed on your
computer, skip this step. If you have both Polyspace Client for C/C++ and
Polyspace Client for Ada products on your system, the Polyspace Language
Selection dialog box opens.

Polyspace Language 5election =]
Select 2 language

(% Polyspace for CIC++

" Polyspace for Ada

ok | Cancel |

3 Select Polyspace for C/C++ and click OK.

The Polyspace verification environment opens.

Set Up Polyspace® Project

Specify source files and Set target and specify
include folders verification options

File Edit Run
.l pelsmajnmend|ese -q] | Project Manager) # Resuls Manager
B Run ¥ ’ Batch fun @9 Stop |@ Create new result folder Use result folder: Result 3 -

Review Options Window Help

“" Project Browser

+ A ‘ =8 | ‘ o ‘ T+ ¥ ‘ =1} example_project 4B
£ Demo C [C] Machine Cnnﬂquatson Machine Configuration
=) example_project [C] £l Target & Compiler
Macros
Environment Settings
Coding Rules & Code Metrics Host Machine Configuration
- Verification Mode e L
= Inputs & Stubbing s
= \(erificatlun Assumptions [] Add to results repository
) Checks Behavior Number of processes for multiple CPU core systems
-Precision
- Scaling Extra Settings
Post Verification ol e
~Reporting
5 Demo_Cpp [C++]
Ei Full Log ’ =
Search: # +
'E% Full Lugl [Verification Statistics| E Progress Monrtorl Output Summary
—
% .| Ready

Monitor progress and view logs

By default, the Polyspace verification environment displays the Project
Manager perspective. The Project Manager perspective has three main panes.

2-5

2 st Up a Polyspace® Project

2-6

Use this For...
section...

Project Browser | Specifying:
(upper-left) ® Source files

® Include folders

e Results folder

Configuration Specifying verification options
(upper-right)

Output Monitoring the progress of a verification, and viewing
(lower-right) status, log messages, and general verification statistics.

You can resize or hide any of these panes. You learn more about the Project
Manager perspective later in this tutorial.

Create a New Project to Verify the Example C File

You must have a project, saved with file type cfg, to run a verification. In
this part of the tutorial, you create a new project for verifying example.c and
single_file_analysis.c.

To create a new project, you:

® “Open a New Project” on page 2-6

e “Specify Source Files and Include Folders” on page 2-9
e “Specify Target Environment” on page 2-11

e “Specify Analysis Options” on page 2-12

® “Save the Project” on page 2-12

Open a New Project
To open a new project for verifying example.c and single file analysis.c:

1 Select File > New Project. The Polyspace Project — Properties dialog
box opens.

Set Up Polyspace® Project

2 In the Project name field, enter example project.

3 Clear the Default location check box. In this tutorial, you change the
location to the project folder that you created in “Prepare Project Folders”
on page 2-3.

Note You can update the default project location. Select

Options > Preferences, which opens the Polyspace Preferences dialog
box. On the Project and result folder tab, in the Define default
project location field, specify the new default location.

4 In the Location field, enter or navigate to the project folder that you
created earlier.

In this tutorial, the project folder is C:\Polyspace\polyspace project.

5 In the Project language section, select C .

Set Up a Polyspace® Project

-~ Project - Properties @

Define project properties

Project definition and location
Project name: |example_project
Version: | 1.0

Author: username

[Use default location

Location: |C:\Polyspace'polyspace_project

Project lanquage

@ C

®C++

Compilation Environment

[7] Use template

m
1]

0
~

[Mext “ Finish |’ Canicel

6 Click Finish.

The example_project opens in the Polyspace verification environment.

Set Up Polyspace® Project

Specify Source Files and Include Folders

To specify the source files and include folders for the verification of example.c
and single_file_analysis.c:

1 In the Project Browser, select the Source folder.
2 On the Project Browser toolbar, click the Add source icon s . The
Polyspace Project — Add Source Files and Include Folders dialog box opens.

3 The project folder polyspace_project must appear in the field Look in. If
it does not, navigate to that folder.

4 Select the sources folder. Then click Add Source.

The example.c file and the single file analysis.c file appear in the
Source tree for example project.

5 Select the includes folder. Then click Add Include.

The includes folder appears in the Include tree for example project.

2 st Up a Polyspace® Project

[Project - Add Source Files and Inciud
Add source files and user includes

& After adding files to your project, please remember to copy them to the suitable modules

Lookin: | |, polyspace_project - | | nddrecursi\relyl a| + 4

I . includes Ell;_"j example_project [C]
&} |/ sources 9@ Source
Recent Items H BB sources
|| example.c

|| single_file_analysis.c

! E}E‘ Indude

Desktop {E3) Ci\Polyspace\polyspace_projectiindudes

E‘|
My Documents

U.‘L.h"

Computer

@
= File name: indudes
Network))
Files of type: | {*.c) files only s | Add Include

Back Mext Finish Cancel

Note In addition to the include folders that you specify, Polyspace
software automatically adds the standard includes to your project.

6 Click Finish to apply the changes and close the dialog box.

The Project Browser now looks like the following graphic.

2-10

Set Up Polyspace® Project

AR | 2|+ |3

E\‘lﬁ' Source
E BE‘ SOUFCES

._. example.c
b single_file_analysis.c
E\‘lﬁ' Include
“[E3) C:\Polyspace\polyspace_projectiincludes
=3 Module_1

B@ Configuration
E example_project

N M Result

Specify Target Environment

Many applications are designed to run on specific target CPUs and operating
systems. Since some run-time errors are dependent on the target, before
running you must specify the type of CPU and operating system used in the

target environment.

In the Project Manager perspective, the Configuration > Target &
Compiler pane allows you to specify the target operating system and

processor type for your application.

To specify the target environment for this tutorial:
1 In the Configuration pane, select Target & Compiler.
2 Set the Target operating system to no_predefined_OS.

3 Set the Target processor type to i386.

For more information about emulating your target environment, see “Set

Up a Target”.

2-11

2 st Up a Polyspace® Project

2-12

Specify Analysis Options

In the Project Manager perspective, the Configuration pane allows you
to set analysis options that Polyspace software uses during the verification
process. For this tutorial, use the default values for all options.

For more information, see “Analysis Options for C Code” or “Analysis Options
for C++ Code”.

Save the Project
To save the project, select File > Save.

The software saves your project using the Project name and Location that
you specified when creating the project.

Run a Verification

3 Run a Verification

Run Verification

3-2

In this section...

“Tutorial Overview” on page 3-2
“Before You Start the Tutorial” on page 3-3
“Prepare for Verification” on page 3-3

“Start Server Verification from Project Manager” on page 3-9

“Start Client Verification from Project Manager” on page 3-20

Tutorial Overview

Once you have created the project example project.cfg, as described in “Set
Up Polyspace Project” on page 2-2, you can run the verification.

You can run a verification on a server or a client.

Use... For...

Server ® Best performance

e Large files (more than 800 lines of code, including comments)

Client ® When the server is busy

e Small files

Note Verification on a client takes more time. When a
verification is running, you might not be able to use your client
computer.

In this tutorial, you learn how to start a server and client verification
using the Project Manager. You also verify the file example.c and
single_file_analysis.c.

The server and client verifications store the same results in your project. You
review these results in the tutorial “Review Verification Results” on page 4-2.

Run Verification

Before You Start the Tutorial

Before you start this tutorial, you must complete “Set Up Polyspace
Project” on page 2-2. For this tutorial, you use the folders and project file,
example project.cfg, from that tutorial.

Prepare for Verification

Open the Project

To run a verification, you must have an open project file. For this tutorial,
you use the project file example project.cfg that you created in “Set Up
Polyspace Project” on page 2-2. If example project.cfg is not already
running, start it.

To open example project.cfg:
1 If the Polyspace software is not already open, open it.
2 Select File > Open Project.

3 In the Polyspace Project dialog box, from the Look in drop-down list,
navigate to polyspace_project.

4 Select example project.cfg.

5 Click Open to open the file and close the dialog box.

3 Run a Verification

3-4

Specify Source Files to Verify

Each Polyspace project can contain multiple modules. With each module, you
can verify a specific set of source files using a specific set of analysis options.

Before you start a verification, you must specify which files you want to verify
by copying them into a verification module. In the example project[C] in
this tutorial, there are two files to verify. You verify both files separately, so
they must be copied into individual modules.

To copy source files to a module:

1 In the Project Browser Source tree, right-click example.c.
2 Select Copy Source File to > Module_1.
The example.c file appears in the Source tree of Module 1.
3 In the Project Browser Source tree, right-click example project[C].
4 Select Create New Module.
A new Module_ 2appears in your Project Browser tree.
5 In the Project Browser Source tree, right-click single file analysis.c.
6 Select Copy Source File to > Module_2.

The single_file_analysis.c file is now displayed in the Source tree
of Module 2.

Run Verification

DFOWS

DAl | |3
EI*;_"} example_project [C]

=53 Source
EIE‘ SOUFCES

i examplec

| single file_analysis.c
=5 Include
{EI C\Polyspace\polyspace_projectiincludes
£+ Module_1
=173 Source
E}B SOUFCES
el | example.c
-2 Configuration

----- @ example_project

E}E,," Maodule_2
=-I7 Source
E}B Sources
“ || single_file_analysis.c
[—le‘,.' Configuration
@ example_project

----- & Result

Check for Compilation Problems

During a verification, if the Compilation Assistant detects compilation errors,
the verification stops. The software displays errors and possible solutions on
the Output Summary tab.

Note The Compilation Assistant does not support the verification option
-unit-by-unit. For more information, see, “Check for Compilation Problems”

To check your project for compilation problems:

3 Run a Verification

1 In the Configuration > Machine Configuration pane, make sure the
Send to Polyspace Server check box is not selected.

2 In the Project Browser tree, right-click the Include folder
(C:\Polyspace\polyspace project\includes), and then select Remove.
Missing include files will cause compilation problems.

SRICLICIEESE
EH example_project [C]
£ Source
E-E3 sources
>|_‘ example.c
._. single_file_analysis.c

=3 Include

53 Moduld &/ Add

EIE' Sou kj Remove Delete |
BB “=] Project Properties Alt+P |

E—:IE' Configuration

..... @ example_project
----- M Result
B+ Module_2
B3 Source
EHES sources
b | single_file_analysis.c
-1 Configuration
@ example_project

----- & Result

3 Select Module 1 in the Project Browser.

4 On the Project Manager toolbar, click b Run .

The software compiles your code and checks for errors. It reports the
results on the Output Summary tab.

3-6

Run Verification

Type Message File Line Cal
i C verification starts at Jul 23, 2012 10:44:40
8 processors have been detected.

 d GMU includes are now used by default for O5-target linux.

 d could not find indude file “incdude.h™ example.c 2

 d the prototype for function 'random_float’ is unknown. example.c 39 15
 d the prototype for function 'random_int’ is unknown. example.c 152 10

The generated default DRS XML file "drs-template.xml™ can ...

In this case, the software generates only warnings (in orange), not errors,

for the missing include files. Because there are no errors, the verification is
still completed. It is a good practice to resolve warnings for missing include
files first, because they might be the root cause of other warnings or errors.

Select Module 2 in the Project Browser tree.

Click the b Run| button again. The verification software runs with
single file analysis.c as the source file.

Again, the software compiles your code and checks for errors. It reports the
results on the Qutput Summary tab.

1 Compiation Erors: 33
Type Message File Line Suggestion/Remark Action

% |could not find indude file "single_file_analysis.h™ single_file_analysis.c |1 IAdd include folder for: single_file_analysis.h Add... -

“? |could not find indude file "single_file_private.h™ single_file_analysis.c (2 Idd include folder for: single_file_private.h Add...

2 |could not find include file “indude.h™ single_file_analysis.c (3 IAdd include folder for: indude.h Add... 3
identifier "u16" is undefined single_file_analysis.c |9 et option: -D ul6=unsigned short Apply 1
identifier “s16™ is undefined single_file_analysis.c |10 =
iidentifier "s16™is undefined single_file_analysis.c |11 Set option: -D s16= - Apply
iidentifier "u8" is undefined single_file_analysis.c (12 Get option: -D ug=unsigned char Apply
identifier "s16" is undefined single_file_analysis.c |13 Set option: -D s16= - Apply
identifier “s16™ is undefined single_file_analysis.c (14 Setoption: -D s16= - Apply
iidentifier "s32"is undefined single_file_analysis.c (17
iidentifier "s32"is undefined single_file_analysis.c |18 Set option: -D s32= - Apply |
identifier 8" i undefined ingle_fle_analysis.c |19
lidentifier "= 16" iz undefined ingle_file_analusi 21 ion D i Aoohe 1~

In this case, the software generates:
® Warnings for the missing include files.

® Errors for undefined identifiers, which stop the verification. The
Suggestion/Remark column indicates that definitions for data types

3-7

3 Run a Verification

are required. This information is present in the include files that were
removed.

7 In the Project Browser tree, right-click the Include folder. From the
context menu, select Add.

The Add Source Files and Include Folders dialog box opens.

[=TProject - Add Source Files SRaTReIie

Add source files and user includes

& After adding files to your project, please remember to copy them to the suitable modules

Lookin: | |, polyspace_project x| rrEE [¥] add recursively| xj| + ¥

o includes E|i;_-,| example_project [C]
|| sOUrces E}lj Source
| EE sources

; || example.c

i
el
Recent Items

|| single_file_analysis.c

! E}lj Indude

Desktop {E3) C:\Polyspace\polyspace_project'indudes

£
My Documents

n |
|

Computer

@
File name: includes
Network))
Files of type: | (=.c) files only o | Add Indude

Back Next Finish Cancel

8 If you are not in the polyspace_project folder, navigate to this folder.
9 Select the includes folder. Then click Add Include.
The includes folder appears in the Include tree for example project.
10 Click Finish.

11 In the Project Browser, select Module 1. On the Project Manager toolbar,
click (BRun)

Run Verification

The verification should start and run to completion without any include
file warnings.

12 In the Project Browser, select Module 2. On the Project Manager toolbar,
. B Run
click .

The verification should start and run to completion without any warnings
or errors.

Start Server Verification from Project Manager

“Start the Verification” on page 3-9

“Monitor Verification Progress” on page 3-11

“Remove Verification Results from the Server” on page 3-16

“Troubleshoot a Failed Verification” on page 3-17

Start the Verification

In this part of the tutorial, you run the verification on a server.
To start a verification that runs on a server:

1 In the Project Manager perspective, on the Configuration > Machine
Configuration pane, select the Send to Polyspace Server check box.

2 On the Project Manager toolbar, click b Run .

Note If you see the message Verification process failed, click OK
and go to “Troubleshoot a Failed Verification” on page 3-17.

The verification has three main phases:

a Checking syntax and semantics (the compile phase). Because Polyspace
software is independent of any particular C compiler, it ensures that
your code is portable, maintainable, and complies with ANSI® standards.

3-9

3 Run a Verification

b Generating a main if the Polyspace software does not find a main and
you have selected the -main-generator option. For more information,
see “Main Generator Behavior for Polyspace Software”.

¢ Analyzing the code for run-time errors and generating color-coded
results.

The compile phase of the verification runs on the client. When the compile
phase is complete:

® You see the message queued on server at the bottom of the Project
Manager perspective. This message indicates that the part of the
verification that takes place on the client is complete. The rest of the
verification runs on the server.

¢ A message in Output Summary gives you the identification number
(Analysis ID) for the verification. For this verification, the identification
number is 1.

Search: 4 RS

Class Description File Line Cal
example_project for C verification start at Dec 15, 2010 15:57:15

[The generated default DRS XML file “drs-template.xml” can be found in <result_dir. ..
AnalysisID : 1

e

3 For information on any message in the log, click the message.

3-10

Run Verification

Monitor Verification Progress
There are two ways to monitor the progress of a verification:

¢ Using the Project Manager — Follow the progress of the verifications
you submitted to the server, as well as client verifications.

¢ Using the Queue Manager (Spooler) — Follow the progress of any
verification job in the server queue.

Monitor Progress Using Project Manager. You can monitor the progress
of your verification by viewing the progress monitor and logs at the bottom
of the Project Manager perspective.

4

Intermediate: 100%:
00:00:03

Verification is running on server with ID: 1

LevelD: 100% Levell: 83% Level2 : 0% I Level3 : 0%
00:00:20 00:00:13 00:00:00 00:00:00

1 [F

The progress monitor highlights the current phase in blue. It displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Project Manager window. To view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
in the log box. Click the left arrows to search back or the right arrows
to search ahead.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3-11

3 Run a Verification

3 Click the Refresh button
progresses.

to update the display as the verification

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Note You can search the logs. In the Search in the log box, enter a

search term and click the left arrows to search backward or the right
arrows to search forward.

Monitor Progress Using Queue Manager. You monitor the progress of
the verification using the Polyspace Queue Manager (also called the Spooler)

To monitor the verification of Example Project:

1 On your desktop, double-click the Polyspace Spooler icon.

Spoaler

The Polyspace Queue Manager Interface opens.

Polyspace Queue Manager Interface
Operaticns Help

D Author Application Results folder CPU Status Date Language
(23 |username example_project |C:\PolySpace\polyspace_projectiVerification_1\Result_ 3 |[AH-SRUNS. .. |completed [15-Dec-2010, 16:03:33 |C

a a o 0 a 0 a o catio 0 A g 0 010 6.0
------ 25 |username |example_project |C:\PolySpace'polyspace_project\verification_1\Result_11 queued 15-Dec-2010, 16:03:21 |C

Connected to Queue Manager AH-SRUNSTRO.dhcp.mathworks.com

User mode

3-12

Run Verification

Tip You can also open the Polyspace Queue Manager Interface by clicking

the Polyspace Queue Manager icon E on the Results Manager toolbar.

2 Point anywhere in the row for ID 1.

3 Right-click to open the context menu for this verification.
Follow Progress...
View Log File...
Download Results...

Download Results in Mew Polyspace Window...

Download Results and Remove From Queue...
Move Down in Queue

Stop...
Stop and Download Results...

Stop and Remowe From Queue...

Remowve From Queue...

4 Select View log file.

A window opens displaying the last 100 lines of the verification.

3-13

3 Run a Verification

[view Log File (23]

Generating results in a spreadsheet format in C:\FolySpace\FolySpace_ “

Generation complete

v o o o o o o o o o o o ol o ol o o o o ol ol ol ol ol ol oy o oy ol ol o o oy o oy ol o o ol o o e o o o o o o ol o o o ol o o ol o o
L

#%% Spoftware Safety Analysis Level 4 done

L

v o o o o o o o o o o o ol o ol o o o o ol ol ol ol ol ol oy o oy ol ol o o oy o oy ol o o ol o o e o o o o o o ol o o o ol o o ol o o
Ending at: Dec 15, 2010 16:4:26

User time for pass4: 00:00:02.34 (2.3real, 2.3u + 0s)

Generating remote file
Done
User time for polyspace-c: 00:00:49.27 (49.3real, 49.3u + 0s (0.1lgc))

"R

#*#% EFnd of Polyspace Verifier analysis
LA i
4| 1 §

Cloze

1 [

5 Click Close to close the window.
6 From the context menu, select Follow Progress.

The Progress Monitor opens.

3-14

Run Verification

File Edit Window Help
Progress Monitor

Intermediate; 1 Level1; ; ey Level3: 0% |' Level4 : 0% || Total

00:00:03 00:00:21 00:00:14 00:00:03 00:00:01 00:00:00 00:00:41

"% Verification Statistics

.

s

Number of files 11
Number of lines : 248

Lm] »

Number of lines without comments @ 136

Automatically stubbed pure functions :

random_int
random_float
get_bus_status

Stats on aliases :

Some stats on aliases computation:
Mumber of invisibles: i
Mumber of alias reads: 0
Mumber of pma writes: 5 -

4 | 1 | »
@ Full Log h Verification Statistics Output Summary |

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The progress monitor
highlights the current phase in blue. It displays the amount of time and
completion percentage for that phase.

The logs report additional information about the progress of the
verification. To view a log, click the button for that log. The information
appears in the log display area at the bottom of the Project Manager
window. To view the logs:

3-15

3 Run a Verification

3-16

a Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
in the log box. Click the left arrows to search back or the right arrows
to search ahead.

b Click the Verification Statistics tab to display statistics, such
as analysis options, stubbed functions, and the verification checks
performed.

¢ Click the Refresh button
progresses.

to update the display as the verification
d Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.
7 Select File > Quit to close the progress window.
8 Wait for the verification to finish.

When the verification is complete, the status in the Polyspace Queue
Manager Interface changes from running to completed.

Polyspace Queue Manager Interface EI@

Operations Help

D Author Application Results folder CPU Status Date Language
----- 23 |username |example_project |C:\PolySpace'polyspace_project\verification_1\Result 9 |AH-SRUNS... |completed |15-Dec-2010, 16:03:33 |C

o 1] 3 a o 0 3 0 3 o catio 0 A 0 d D 010, 16:04

w25 |username |example_project |C:\PolySpace\polyspace_project\Werification_1\Result_11 |AH-SRUNS... [completed |15-Dec-2010, 16:05:13 [C

Connected to Queue Manager AH-SRUNSTRO.dhcp.mathworks.com User mode

Remove Verification Results from the Server

At the end of a server verification, the server automatically downloads
verification results to the results folder specified in the project. You do

not need to manually download your results. You can, however, manually
download verification results to another location on your client system, or to
other client systems.

Run Verification

Verification results remain on the server until you remove them. Once your
results have been downloaded to the client, you can remove them from the
server queue.

To remove your results from the server:

1 In the Polyspace Queue Manager Interface, right-click the verification,
and select Remove From Queue.

A dialog box opens to confirm that you want to remove the verification
from the queue.

Remove From Queue @

'jei' Do you really want te remove the selected verification(s) from the queue?

Yes | | No

2 Click Yes.

Note To download the results and remove the verification from the queue,
right-click the verification and select Download Results And Remove
From Queue. If you download results before the verification is complete,
you get partial results and the verification continues.

3 Select Operations > Exit to close the Polyspace Queue Manager Interface.

Once the results are on your client, you can review them using the Results
Manager perspective. You review results from the verification in “Review
Verification Results” on page 4-2.

Troubleshoot a Failed Verification

When you see a message that the verification failed, it indicates that
Polyspace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

3-17

3 Run a Verification

3-18

Hardware Does Not Meet Requirements. If your computer does not have
the minimum hardware requirements. the verification fails. For information
about the hardware requirements, go to:

www.mathworks.com/products/polyspaceclientc/requirements.html.

To determine if hardware is the cause of the failed verification, search the
log for the message:

Errors found when verifying host configuration.
You can:

e Upgrade your computer to meet the minimal requirements.

® In the General section of the Analysis options, select the Continue with
current configuration option and run the verification again.

You Did Not Specify the Location of Include Files. If you see a message
in the log such as the following, either the files are missing or you did not
specify the location of include files.

include.h: No such file or folder

For information on how to specify the location of include files, see “Create a
New Project to Verify the Example C File” on page 2-6.

Polyspace Software Cannot Find the Server. If you see the following
message in the log, Polyspace software cannot find the server.

Error: Unknown host

Polyspace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Options > Preferences.

2 Select the Server configuration tab.

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Run Verification

=+ Polyspace Preferences IEI
| Tools Menu | Review statuses | Aggistant configuration | Mizcellaneous | Character encoding
Server configuration | Results folder | Editors | Generic targets

Remote configuration

Mote: Send to Polyspace server option is mandatory when the project contains multitasking options.
The multitasking options will be ignored otherwize.

@ Automatically detect the remote server

(7 Use the following server and port: [-0 12427

The server name Tocalhost”™ can be used if the server is the local machine.
Metrics configuration

Polyspace Metrics allows you, through a web browser, to drill down to specific coding rule violations and run-time checks. If you
want to view or dassify these items as defects within Polyspace, you dick the item. Polyspace opens with the spedfic item
displayed. However, this requires the downloading of result files from the Polyspace Metrics web interface to a locally accessible
folder. On this tab, you specify how result files are downloaded from the Polyspace Metrics web interface and when justifications
are saved in the Polyspace Metrics database.

If you select this check box, results are downloaded to the folder where the verification was launched. If this launch folder does
not exist, results are downloaded to the location spedified in the Folder field.
Otherwise, a file browser allows you to select the download location.

Download results automatically
Folder: Vinfrnas-00-ah'srunstro\Documents\Polyspace_Workspace\DownloadedResults

If you select this check box, the save action (Ctrl+5) will save your justifications in the local results folder and the Polyspace
Metrics database. If you do not select this chedk box, the save action will save justifications in the local results folder only. If you
want to save justifications in the Polyspace Metrics database, dick the 'Save in database' button.

Save justifications in the Polyspace Metrics database

Port used to communicate with the Polyspace Metrics web interface.

Port number: 12428

The Polyspace Metrics web interface URL is defined as follow: http://<remoteServer >; <porthumber >,
The remote server can be configured above.

Web server port number: 8080

’ oK]| Apply |[Cancel

By default, Polyspace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the “Software Configuration”.

3-19

3 Run a Verification

3-20

Start Client Verification from Project Manager

e “Start the Verification” on page 3-20
* “Monitor the Progress of the Verification” on page 3-22
e “Complete Verification” on page 3-23

® “Stop the Verification Before Completion” on page 3-24

Start the Verification

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

To start a verification that runs on a client:

1 If the project example project.cfg is not already open, open the project.

For information about opening a project, see “Prepare for Verification”
on page 3-3.

2 In the Project Manager perspective, on the Configuration > Machine
Configuration pane, clear the Send to Polyspace Server check box.
. . ¥ Run
3 On the Project Manager toolbar, click .
4 If you see a caution that Polyspace software will remove existing results

from the results folder, click Yes to continue and close the message dialog
box.

The Output Summary and Progress Monitor windows become active,
allowing you to monitor the progress of the verification. If you see the

Run Verification

message Verification process failed, click OK and go to “Troubleshoot
a Failed Verification” on page 3-17.

3-21

3 Run a Verification

3-22

Monitor the Progress of the Verification

You can monitor the progress of the verification by viewing the progress
monitor and logs at the bottom of the Project Manager perspective.

4

Intermediate: 100%
00:00:03

Verification is running on server with ID: 1

Leveld: 100%: Levell: 89%: Level2 : 0% I Level3 : 0%
00:00:20 00:00:13 00:00:00 00:00:00

1 | 3

The progress monitor highlights the current phase in blue. It displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Project Manager window. To view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
in the log box. Click the left arrows to search back or the right arrows
to search ahead.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3 Click the Refresh button _*
progresses.

| to update the display as the verification

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Run Verification

Complete Verification

When the verification is complete, the message End of Polyspace Verifier
analysis appears in Full Log. The results file appears in the Project
Browser pane.

BRS¢ |3

= t-:J‘j example_project [C]
E} I3 Source
B ﬁ SOUrCES
= | example.c
Ei E‘ Include
L. "uncludes
cH=
EI 3 Source
=" 5 sources
- | | example.c
EI E‘..' Configuration
- | example_project
EI I3 Result
E}E' Result_2 [Verification Completed]
@ opticns

------ --fid RTE_px_example_project_LAST_RESULTS.ite

In the tutorial “Review Verification Results” on page 4-2 , you open the
Results Manager perspective and review the verification results.

3-23

3 Run a Verification

3-24

Stop the Verification Before Completion

You can stop the verification before it is complete. If you stop the verification,
results are incomplete. If you start another verification, the verification starts
from the beginning.

To stop a verification:

1 On the Project Manager toolbar, click the Stop button O StDF

A warning dialog box opens.

-

Polyspace Venfication Warning @

! . Doyou really want to stop the current execution?
L1

2 Click Yes. The verification stops.

3 Click OK to close the Message dialog box.

Note Closing the Polyspace verification environment window does not stop
the verification. To resume display of the verification progress, start the
Polyspace software and open the project.

Review Verification Results

4 Review Verification Results

4-2

Review Verification Results

In this section...

“Tutorial Overview” on page 4-2

“Before You Start” on page 4-2

“Open Verification Results” on page 4-3

“Explore Results Manager perspective” on page 4-3
“Review Results” on page 4-7

“Review Results Systematically” on page 4-23
“Automatically Test Unproven Code” on page 4-28

“Generate Reports of Verification Results” on page 4-28

Tutorial Overview

In the previous tutorial, “Run Verification” on page 3-2, you completed a
verification of example.c. In this tutorial, you explore the verification results.

The Polyspace verification environment contains a Results Manager
perspective, which you use to review results. In this tutorial, you learn:
1 How to use the Results Manager perspective, including how to:
¢ Open the Results Manager perspective and view verification results.
® Review results.

® Generate reports.

2 How to interpret the color coding that Polyspace software uses to identify
the severity of an error.

3 How to find the location of an error in the source code.

Before You Start

Before starting this tutorial, be sure to complete the tutorial “Run
Verification” on page 3-2.

Review Verification Results

In this tutorial, you use the verification results in this file:

polyspace_project\Verification_(1)\Result_(1)\
RTE_px_example_project LAST_RESULTS.rte.

Open Verification Results

® “Open Results Manager perspective” on page 4-3

® “Open Verification Results” on page 4-3

Open Results Manager perspective
Use the Results Manager perspective to review verification results.

To open the Results Manager perspective:

® In the Polyspace verification environment toolbar, select the Results

Manager button ';L Results Manager .

Open Verification Results
To open the verification results:

1 In the Polyspace verification environment, select File > Open Result.

2 In the Open results dialog box, navigate to the results folder:
polyspace_project\Module_1\Result_2.

3 Select the file RTE_px_example_project_LAST_RESULTS.rte.

4 Click Open. The results appear in the Results Manager perspective.
You can also open results from the Project Manager perspective by
double-clicking the results file in the Project Browser.

Explore Results Manager perspective

® “Overview” on page 4-4

e “Review the Results Explorer Tab” on page 4-5

4 Review Verification Results

Overview
The Results Manager perspective looks like the following figure.

Review statistics and

Check details check information

File Edit Run Review Options Window Help

‘E@@BH|")0|&%%‘%|Oﬂ|=@|5earch:\ vlpDEsesenyhveDWhnlewde |u‘5prmectMangerl—7-ijstmaga
E.i“— sm[ME‘Nﬂhlnuva v]E"‘{ [s T
R BT e o
Al checks. - ‘ k_IiE' :57 ’_1' 517 E_Y 5,7 :a' ﬂﬁ (o] "3” example.c / Pointer_Arithmetic| { o3
i 1
Procedural entities. §X|?|[¥| e C 104 *p = 5; /* Out of bounds */
|2 Demo_C (unp: 1/44, cov: 85%) | 5 | & |12 |10 |259) _* 1 |[1oP.8 Error : pointer is outside its bounds =
B example.c alz|s|2|sa| 1 dereference of local variable 'p' (pointer to int 32, size: 32 bits): =
N) pointer is not nul i =
- ! - | BEL paints to 4 bytes at offset 400 in buffer of 400 bytes, so is outside bounds i
-Non_Infinite_Loop () 1] @8 | may point to variable or field of variable in: {Pointer_Arithmetic:array} [Justified
=h-Painter_Asithmetic {) 1|1 2 12| 89 Enter comment here...
~ NIVLO 1| 94 3
F NIVL1 T o84 | B Review Statistics | ¥ Check Review
wnd® OVFL 2 1| o4 |4 T = - — — .
Source <
~f IDP.3 1] 98
example.c
o NIP.4 1] 98
= NIP5 1| 97 Lo Calls
ag '
~F MISRAGC 17.4 1 Ed 2 i
+F RV.E 1| 100 ¥ pst_stubs_0.get_bus_status B
S — | e 100 if{get bus status() > 0) ety
- 1 04 | - w : ~ W pst_stubs_0.get bus_status -
-1 10z if{get_oil pressure() > 0} 7 I v
~ NIP.9 1| 104 | - 103 { 3 =
4 107 § = Variable Access
X UnR.10 104 Fp = 5; /7 Out of bounds 7/
o IRVA3 1| 1z 108 ¥ e 30
-~ NIVL.14 1] 114 108 else Veriables
< wps 1| ma | 107 L 2
 NIVLAT 1] 114 | < 108 it initislisstions.am 5
~% MISRAC 174 1 14 | 1v||109 } [J-initislisstions.curent_dsta
LRl n] * 110 ¥ B first_paiload =
{—? Results Explorer J 4 Results Summary | 111 M | Kl || »
| 9% | Function returns an initialized value ~ Col: 5
Run-time checks and : i
Source code Variable access Call hierarchy

coding rule violations

The Results Manager perspective has six sections below the toolbar. Each
section provides a different view of the results. The following table describes
these views.

Review Verification Results

This Pane or View...

Displays...

Results Explorer\Results Summary
(Procedural entities view)

List of the checks (diagnostics) for
each file and function in the project

Source Source code for a selected check in
(Source code view) the procedural entities view
Check Details Details about the selected check

(Selected check view)

Check Review\Review Statistics
(Coding review progress view)

Review information about the
selected check.

Statistics about the review progress
for checks with the same type and
category as the selected check

Variable Access
(Variables view)

Information about global variables
declared in the source code

Call Hierarchy
(Call tree view)

Tree structure of function calls

You can resize or hide any of these sections. You learn more about the Results
Manager perspective later in this tutorial.

Review the Results Explorer Tab

The Results Explorer view displays a table with information about the
diagnostics for each file in the project. The Results Explorer view is also

called the Procedural entities view.

When you first open the results file from the verification of example.c, you

see the following procedural entities.

4-5

4 Review Verification Results

All checks | ¥ % %%y
Procedural entities §|X| #|v|¥|Lne col =|Detais
3|z 175]| 85 24
xample.c 3|2 42 | 83 A 84 lexample.c
nclude.h 18 0 |include.h
nath.h 115 0 |math.h
_polyspace__stdstubs.c 1 0 | polyspace__stdstubs.c
_polyspace_main.c 2 A 100 _pelyspace_main.c
1| 1 F

. Results Explorer

S Results Summary

The file example.c is red because it has a run-time error. Polyspace software

assigns each

file the color of the most severe error found in that file. The first

column of the table in the Procedural Entities view is the procedural entity
(the file or function). The following table describes some of the other columns
in the procedural entities view.

Column
Heading

Indicates

]

Number of red checks (operations where an error always
occurs)

x|

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of purple checks (coding rule violations)

Review Verification Results

Column Indicates

Heading

ﬂ Number of green checks (operations where an error never
occurs)

ﬂ Selectivity of the verification (percentage of checks that are
not orange)
This percentage is an indication of the level of proof.

You can select which columns appear in the procedural entities view by
editing the preferences.

What you select in the procedural entities view determines what you see in
the other views. In the following examples, you learn how to use the views
and how they interact.

Review Results

¢ “What Are Review Levels?” on page 4-7

¢ “Display All Checks” on page 4-9

e “Review All Checks” on page 4-9

¢ “Review Additional Examples of Checks” on page 4-15
¢ “Filter Checks” on page 4-20

What Are Review Levels?

To facilitate your review of verification results, Polyspace allows you to specify
the type of results displayed in the Procedural entities and Source views
of the Results Manager perspective. You can specify:

¢ Type of coding rule violations, that is, purple checks

¢ Type and number of orange run-time checks

There are five levels at which you can review your results:

4-7

4 Review Verification Results

® 0 — The software displays violations of coding rules with state Error and
red and gray run-time checks. You can configure the software to display
orange checks that are potential run-time errors. Through the Polyspace
Preferences > Review Configuration tab, specify the categories of
potential run-time errors that you want the software to display. By default,
the software does not display any orange checks at this level. See “Review
Checks at Level 0” on page 4-23.

This level i1s suitable for the review of fresh code.

e 1, 2, and 3 — The software displays all purple checks and red, gray,
and green run-time checks. The software displays orange checks
according to values specified on the Polyspace Preferences > Review
Configuration. You can use either a predefined or a custom methodology
to specify the number of orange checks per check category. See “Review
Checks at Levels 1, 2, and 3” on page 4-24.

For a predefined methodology, these levels are suitable for reviews at the
following stages of the development process.

Level Development Stage
1 Fresh code

2 Unit tested code

3 Code Review

e All — The software displays all purple checks and red, gray, green, and
orange checks. When you want to carry out an exhaustive review of your
verification results, use this level. See “Review All Checks” on page 4-9.

In the Results Manager perspective, the toolbar provides controls specific
to review levels.

T o [Methodology forc - 4 p P

The controls include:

¢ A slider for selecting the review level — 0, 1, 2, 3, or A1l1l. By default, the
Results Manager perspective opens at level 1.

¢ A menu for selecting the review methodology for levels 1, 2, and 3.

4-8

Review Verification Results

® Arrows for navigating through checks.

Display All Checks

By default, the Results Manager perspective opens at level 1. To display all
checks in the Procedural entities view, move the Review Level slider to Al11.

Review All Checks

In this part of the tutorial, you learn how to use the Results Manager
perspective to examine verification checks. This part of the tutorial covers:
e “Select a Check to Review” on page 4-9

* “Display the Calling Sequence” on page 4-12

* “Track Review Progress” on page 4-12

Select a Check to Review. In the procedural entities view, example.c

is red, indicating that this file has at least one red check. To review a red
check in example.c

1 In the procedural entities section of the Results Explorer view, expand
example.c.

2 Expand the red procedure Pointer_ Arithmetic().

A color-coded list of the checks performed on Pointer_ Arithmetic() opens.

4-9

4 Review Verification Results

ElPointer_aAsithmetic {) 1 €| 89 | 12 |95 example.c

..... + NIVL.E 24 13 Local variable is initialized {type: int 22}

..... ~ NIVL.2 94 22 Local variable is initialized {type: int 32)
a4 23 (Operation [+] on scalar does not overflow in INT32 range
98 8 Pointer is within its bounds
96 7 Fointer is initialized

..... " NIFZ 1 a7 [i] FPointer is initialized

..... T IDP.2 1 104 | 10 Emor : pointer is outside its bounds

..... ~ NP8 1 104 | 11 Fointer is initialized

..... MW UNR.23 1 107 k] Unreachable code

..... @ NIVL.18 1] 114 | 8 Locsl variable is initialized [type: int 32)

..... 'j 114 18 Warning : pointer may be outside its bounds

..... + NIF.14 1 114 | 18 FPointer is initialized

..... W NIVL.13 1] 114 | 20 Locsl variable is initialized [type: int 32)
118 11 Local variable is initialized {type: int 32)
118 18 Local variable is initialized {type: int 32)
118 10 Paointer is initialized
118 14 Local varisble is initislized {type: int 32)

..... " IDF.20 1 119 L] Fointer is within its bounds

..... " HIF.18 1 19 7 Pointer is initialized

In the list of checks, each item has an acronym and a number. The acronym
indicates the check type and the number identifies the check within the
function. For example, with IDP.9:

e IDP stands for Illegal Dereferenced Pointer

® 9 states that the check is the ninth check in the function
You can identify a check uniquely by stating the file name, function name,

check acronym and check number. For information about different types of
checks, see “Run-Time Checks for C Code”.

3 Click the red IDP.9.

The Source pane displays the section of source code where this error
occurs.

4-10

Review Verification Results

Example.c| 14 &

9z int i, *p = array:

93

04 for(i = 0; 1 £ 100; i+H]

a5 {

95 o= 0;

a7 P+

95 3

a9

100 if(get_bus_status() > 0]

10l {

102 if(get o0il pressure() > 0)

103 {

104 po= 5: /% Out of boundsz */
105 3

106 else

107 {

105 14+

109 1

110 3 r
' i | b

[

4 At line 104 of the code, click the red code.

An error message box opens indicating that when the pointer p is
dereferenced, it is outside of its bounds. At line 92, p points to the start of
array which has 100 elements. The for loop starting at line 94 initializes
the elements of array to 0. This for loop leaves p pointing to the location
after the last element of array

4-11

4 Review Verification Results

4-12

Display the Calling Sequence. You can display the calling sequence that
leads to the code associated with a check. To see the calling sequence for the
red IDP.9 check in Pointer_ Arithmetic():

1 Expand Pointer_ Arithmetic().

2 Click the red IDP.9.

E
3 In the Check Review toolbar, click the call graph button {5‘ .

A window displays the call graph.

_

@ ‘[:_P 95% - U iy

Demo_C - Acce...is.c output_v7 | Demo_C - Call...ithmetic.IDP.9 4 B
main.c example.c example.c example.c
main RTE Painter_aArithmetic IDF.9

The code associated with IDP.9 is in Pointer_Arithmetic. The generated
main function calls RTE, which calls Pointer_Arithmetic.

Track Review Progress. You can keep track of the checks that you have
reviewed by marking them. To mark that you have reviewed the red IDP.9

check in Pointer_Arithmetic():
1 Expand Pointer_Arithmetic().
2 Click the red IDP.9.

The Review Statistics view displays a table with statistics about the
review progress.

Review Verification Results

Coding review progress Count Progr...
Red IDP justified / to justify 0/1 0
Red justified / to justify 08 0
Gray justified [to justify 0/e 0
Crange justified / to justify 0,20 0
Software reliability indicator 215/249 36

The Count column displays a ratio and the Progress column displays
the equivalent percentage.

The first row displays the ratio of justified checks to total checks that have
the same color and category as the current check. In this example, the
first row displays the ratio of reviewed red IDP checks to total red IDP
errors in the project.

The second, third, and fourth rows display the ratio of justified checks to
total checks for red, gray, and orange checks respectively.

If you specified coding rules checking, the next row displays the ratio of
justified coding rule violations to total coding rule violations.

The last row displays the ratio of the number of green checks to the total
number of run-time checks, providing an indicator of the reliability of the
software.

Information about the current check (the red IDP.9) appears in the Check
Details pane (selected check view).

{5‘ ﬂﬁ 4= "3'" example.c / Pointer_Arithmetic

104 #*p = 5; /* Cut of bounds */

IDP.5 Error : pointer is outside its bounds
dereference of local variable 'p' (pointer to int 32, size: 32 bits):
pointer is not null
points to 4 bytes at offset 400 in buffer of 400 bytes, so is cutside bounds
may point to variable or field of variable in: {Pointer_Arithmetic:array}

3 After you review the check, from the Check Review tab, select a
Classification to describe the severity of the issue:

4-13

4 Review Verification Results

® High
® Medium
® | ow

® Not a defect

4 From the Check Review tab, select a Status to describe how you intend
to address the issue:

® Fix

* Improve

® Investigate

® Justify with annotations

® No Action Planned

® Other

® Restart with different options

® Undecided

4

Note You can also define your own statuses. See “Define Custom Status”.

5 On the Check Review tab, in the comment box, enter additional
information about the check.

6 Select the check box to indicate that you have justified this check.

The Coding review progress part of the window updates the ratios of
errors reviewed to total errors.

_

Coding review progress Count Progress
Red IDP justified / to justify 11 100
Red justified [to justify 1/8 12|
Gray justified [to justify 06 0
Crange justified [to justify 0,20 [u}
Software reliability indicator 215/249 86

4-14

Review Verification Results

Review Additional Examples of Checks
In this part of the tutorial, you learn about other types and categories of

errors by reviewing the following examples in example.c:
¢ “Example: Unreachable Code” on page 4-16

e “Example: Arithmetic Error” on page 4-17

e “Example: A Function with No Errors” on page 4-18

e “Example: Division by Zero” on page 4-18

4-15

4 Review Verification Results

4-16

Example: Unreachable Code. Unreachable code is code that never
executes. Polyspace software displays unreachable code in gray. In the
following example, you look at an example of unreachable code.

1 In Procedural Entities, click Unreachable Code().

The source code view displays the source code for this function.

example.c 4 B
196 -
197

198

199 static void Unreachable Codefwvoid)

200 /% Here we demonstrate Polyspace WVerifier's ability to

201 identify unreachable sections of code due to the

202 value constraints placed on the wariables.

203 *

204 { int ¥ = random _inti):

205 int y = randon_int();

Z06

207 if (x> ¥

208 i

209 Xo=E oW

210 if iz < 0 El
211 i

21z x=x+ 1;

213 H =
4| [l [

2 Examine the source code.

At line 210, the condition x < 0 is always false.
because the branch is never executed.

The curly bracket { is gray

Review Verification Results

Example: Arithmetic Error. In the following example, Polyspace software
detects a memory corruption error:

1 In the Procedural entities view, expand the red Square_Root () function.

The source code view displays the source code for this function.

(“Soee . 98X

example.c | 4 B
-

173 static wold Jgquare Foot conv (double alpha, float *heta pt)

150 S* Perform arithmetic cohnwversion of alpha to beta */

181 {

18z Fheta pt = (float)({1.5 + coa(alpha))/5.0);

183 3

1g4

185 atatic woid ISquare Root (woid)

156 {

157 double alpha = randowm float(]);

1588 float betar

139 float gamma; |

190 E

191 druare_Root_conw (alpha, sheta):;

192

1593 gawma = (float)sgroibeta - 0.75); A* always sqrtinegatiwve

194 i -

' 1 | F

2 Examine the source code.

Because beta is always less than 0.75, the argument to the sqrt () function
at line 193 1s always negative.

4-17

4 Review Verification Results

4-18

Example: A Function with No Errors. In the following example, Polyspace
software verifies code with a large number of iterations, and determines that
the loop terminates and a variable does not overflow:

1 In Procedural entities, click the green Non_Infinite Loop() function.

The source code view displays the source code for this function.

0L - -

example.c | 4 p B
=13 static int Non Infinite Loop (woid) -
a7 1 const int big = 1073741821 ; /% Z%¥%30-3 */

G int x=0, ¥=0;

6a

70 while (1) 4
71

7z [

73 if (v > big) { break;}

74 X o=+ 2

75 ¥ =3xS 2

76 !

7

748 ¥ o= x / 100;

7 return v

80 1 -
a4 | m | b

2 Examine the source code. The variable x never overflows because the while
loop at line 70 terminates before x can overflow.

Example: Division by Zero. In the following example, Polyspace software
detects division by zero:

1 In Procedural entities, expand Recursion().

The source code view displays the source code for this function.

Review Verification Results

S OLIFCE o o

example.c| 4 - B3

137
138
139
140
141
142
143
144
145
146
147
145
149

static woid Recursion (int® depth)

A% if depth<0, recursion will lead to division by zero */
! float adwvance:

*depth = *depth + 1;
advance = 1.0f/(float) (*depth);: /% potential division by zera */

if (*depth < 50)
{
Recursion(depth) ;

'

static void Recurzion caller(wvoid)
{ int x=random int(); —

m

if ({xx-4) &6 (x £ -1)) &
i

Fecursion(&x 1: /4 always encounters a diwvision by zero

® = 10;
if (random_int() > 0)
i

Recursion(&x 1: S* never encounters a division by zero #/

[l | 2

2 Examine the Recursion() function.

When Recursion() is called with depth less than zero, the code at line 142
results in division by zero. The orange color indicates that this operation is

a potential error (depending on the value of depth).

3 Examine the red Recursion_caller function.

The first call to Recursion() at line 157 is red because it calls

Recursion() with depth less than zero, causing a division by zero. The

4-19

4 Review Verification Results

4-20

second call to Recursion() at line 164 does not cause division by zero
because it calls Recursion() with depth greater than zero.

Filter Checks

To focus on certain checks, you can filter checks that you see in the Results
Manager perspective. Polyspace software allows you to filter your results in
several ways. You can filter:

® Run-time checks or coding rule violations

® Run-time checks by category (for example, ZDV, IDP, and NIP)

¢ Violations of selected coding rules

® Run-time checks by color (gray, orange, green)

e Justified or unjustified checks

¢ Checks by classification

® Checks by status

To filter checks, on the Results Explorer or Results Summary toolbar,
select one of the following filters.

All checks | *F % % % °v Oy
The tooltip for a filter button indicates what the filter does.

Example: Filter Coding Rule Violations

To hide all coding rule violations, on the Results Explorer or Results
Summary toolbar, from the drop-down list of the first filter, select Run-time
checks.

;AII checks -]

All checks
Coding Rule violations
Run-Time checks

The software hides all coding rule violations and displays only run-time
checks.

Review Verification Results

To filter violations of a specific coding rule:

1 On the Results Explorer or Results Summary toolbar, click the coding

CR
rules filter icon | =¥ /.

2 From the drop-down list, clear the check box for the coding rule, for
example, 5.4.

0

R C_ s
< I
Select All
Unselect All

2.2 - source code shall only use /™

1]

34 - All uses of the #pragma directive ...
54 - Atag name shall be a unique ident...
5.6 - Mo identifier in one name space sh..

5.7 - Mo identifier name should be reuse...

I<Il<]l<]

6.3 - Typedefs that indicate size and si...

The software does not display violations of this rule.
Example: Filter IRV Checks

You can use an RTE filter to hide a given check category, such as IRV. When
a filter is enabled, you do not see that check category.

To filter IRV checks:

1 Expand Square_Root().

Square_Root () has five checks: four are green and one is red.

RTE

2 Click the RTE filter icon | ™ .

4-21

4 Review Verification Results

4-22

3 Clear the IRV option.

RTE CR C_ S
1 e g gt B
Select All

Unselect All

N O

L)

Z g
Z

A=
o 3
=

NRNRONRNE
¢
T

Ly
=l
L=

The software hides the IRV check for Square_Root ().

E}--Sq.ﬂ'a_?::lji
! W HIVL1
‘e § STOD_LIBS

4 Select the IRV option to redisplay the IRV check.

When you filter a check category, red checks of that category are not
hidden. For example, if you filter IDP checks, you still see IDP.9 under
Pointer_Arithmetic().

Example: Filter Green Checks

You can use a Color filter to hide certain color checks. When a filter is
enabled, you do not see that color check.

To filter green checks:

1 Expand Square_Root().

Square_Root () has five checks: four are green and one is red.

Review Verification Results

- sTo_LIBS
o NIVL 2

+*
2 Click the Color filter icon | =¥ .

3 Clear the Green Checks option.

C_ s
%y
Select All

Unselect All

Gray Checks
Qrange Checks

Green Checks
QOrange checks possibly impacted by inputs

The software hides the green checks.

quare_Root |)

% STD_LIBS

Review Results Systematically

e “Review Checks at Level 0” on page 4-23
e “Review Checks at Levels 1, 2, and 3” on page 4-24
e “Review Checks Progressively” on page 4-26

Review Checks at Level 0

In addition to red and gray checks, at this level you can focus on orange
checks that Polyspace identifies as potential run-time errors. These potential
run-time errors fall into three categories:

® Path — The software identifies orange checks that are path-related issues,
which are not dependent on input values.

4-23

4 Review Verification Results

4-24

® Path and bounded input — Default. In addition to orange checks that are
path-related issues, the software identifies orange checks that are related
to bounded input values.

® All — In addition to path-related and bounded input orange checks, the
software identifies orange checks that are related to unbounded input
values.

To specify the potential run-time error category for level 0:
1 In the Polyspace verification environment, select Options > Preferences.

2 In the Polyspace Preferences dialog box, select the Review configuration
tab.

3 From the Level drop-down list, select your category.

Il‘\.lu::u'ua -

Path
Path and bounded input
All

The default is Path and bounded input. If you select None, the software
displays only red and gray checks.

4 Click OK to save your options and close the Polyspace Preferences dialog
box.

To select review level 0, on the Results Manager toolbar, move the Review
Level slider to 0.

Review Checks at Levels 1, 2, and 3

In addition to red, gray, and green checks, the software displays orange
checks according to values specified on the Review Configuration tab in
the Polyspace Preferences dialog box. See “View Methodology Requirements
for Levels 1, 2, and 3” on page 4-25.

You can use either a predefined or a custom methodology to specify the
number of orange checks per check category.

Review Verification Results

To select a predefined methodology and review level:

1 From the Results Manager perspective, select Options > Preferences.

2 In the Polyspace Preferences dialog box , select the Review configuration
tab.

3 From the Methodology drop-down list, select, for example, Methodology
for C.

IME‘thudulugy for C -

Methodology for C
Methodology for C++

Methodology for Model-Based Design

4 Move the Review Level slider to your required level, for example, level 1.

a 1 2 3 Al

View Methodology Requirements for Levels 1, 2, and 3. In this part of
the tutorial, you examine Methodology for C, which defines the number of
orange checks that you review at levels 1, 2, or 3.

To examine the configuration for Methodology for C:

1 In the Polyspace verification environment, select Options > Preferences.

2 In the Polyspace Preferences dialog box, select the Review configuration
tab.

3 From the Methodology drop-down list, select Methodology for C.

In the section Levels 1, 2, and 3, a table shows the number of orange
checks that you review for a given level and check category.

4-25

4 Review Verification Results

Levels 1, 2, and 3

Level 1 Level 2 Level 3
Common
2oV 5 2 ALL
MNIVL 10 50 ALL
S-OVFL 10 50 ALL
COR 10 10
NIV 1] 10
F-OVFL 5 10 20
ASRT 5 20
C & C++only
OBAI 10 20 ALL
SHF 3 10 ALL
IDP 10 20
NIP 10 20
STD_LIB
C only

IRV

w
[¥]

ALL

For example, the table specifies that you review five orange ZDV checks
when you select level 1. The number of checks increases as you move from
level 1 to level 3, reflecting the changing review requirements as you move
through the development process.

4 Click OK to close the dialog box.

Review Checks Progressively

b

On the Results Manager perspective toolbar, use the forward arrow to
move to the next unjustified check. The software takes you through checks
in the following order:

e All red checks

e All gray checks (the first check in each unreachable function).

Orange checks — the number of orange checks is determined by the
methodology and review level that you select.

Earlier in this tutorial, you selected Methodology for C, criterion 1. In this part
of the tutorial, you review the checks for example.c using this methodology
and criterion. To navigate through these checks:

4-26

Review Verification Results

1 Select the Results Summary view.

Reaylts at

Al chedks v | ME Ch bg Hp By g

Name: File ’ Justified Cl

' IDP.2 example.c) -
NTC.3 example.c = T
STD_LIB.4 example.c = =

sl example.c 0

F NIVL.O example.c =

|OVFL.5 example.c 0

? |OVFL.3 example.c 0

“# |ovFL.B example.c =

? |OVFL.8 example.c 0

¥ |UNR. 10 example.c B |

o |UNR.B example.c =

- |MISRACG.3 example.c]

- |MISRAC6.3 example.c B |

v |MISRAC6.3 example.c &

¥ |MISRACE.3 example.c 0

- |MISRAC6.3 example.c B |

v |MISRAC6.3 example.c]

= |MISRACS.10 example.c 0

- |MISRACG.3 example.c B |

v |MISRAC6.3 example.c]

¥ |MISRACE.3 example.c 0

- |MISRACG.3 example.c =

¥ |MISRACE.3 example.c]

- |MISRAC&.3 example.c 0 =

4 " | v
L Results Explorer | <& Results Summary
2 Click the forward arrow |L| to move to the next unjustified check.

The Source pane displays the source code for this check. The Check
Details pane displays information about this check.

You can display the calling sequence and track review progress, as
described in “Review Results” on page 4-7.

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box opens asking if you want to start again
from the first check.

4-27

4 Review Verification Results

Wrapping search @

'.0.' End of the set of checks under review.

Do you want to start again from the first check?

| Yes | ‘ Mo |

4 Click No.

Automatically Test Unproven Code

Reviewing orange code to find true errors is a time-consuming task. You can
use the Automatic Orange Tester to automatically create and run test cases
to identify errors in the orange code. The workflow for using the Automatic

Orange Tester is:

1 Set an option to indicate that you want the software to run the Automatic
Orange Tester at the end of the verification.

2 Run the verification. The software uses results from the Automatic Orange
Tester to identify potential run-time errors.

3 If you want to perform further dynamic tests on the code, run the Automatic
Orange Tester manually.

4 Review the results.

To learn how to use the Automatic Orange Tester, see “Automatically Test
Orange Code”.

Generate Reports of Verification Results

e “Polyspace Report Generator” on page 4-28

® “Generate Report for example.c” on page 4-30

Polyspace Report Generator

The Polyspace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

4-28

Review Verification Results

The Polyspace Report Generator provides the following report templates:

® Coding Rules Report — Provides information about compliance with
MISRA C Coding Rules, as well as Polyspace configuration settings for
the verification.

e Developer Report — Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification. Detailed results are
sorted by type of check (Proven Run-Time Violations, Proven Unreachable
Code Branches, Unreachable Functions, and Unproven Run-Time Checks).

* Developer Review Report — Provides the same information as the
Developer Report, but reviewed results are sorted by review classification
(High, Medium, Low, Not a defect) and status. Untagged checks are sorted
by file location.

* Developer with Green Checks Report — Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

® Quality Report — Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

e Software Quality Objectives Report — Provides comprehensive
information on software quality objectives (SQO), including code metrics,
code analysis (coding-rules checker results), code verification (run-time
checks), and the configuration settings for the verification. The code
metrics section provides the same information that is displayed in the
Polyspace Metrics web interface.

The Polyspace Report Generator allows you to generate verification reports in
the following formats:

HTML

e PDF

e RTF

DOC (Microsoft Word)
e XML

4-29

4 Review Verification Results

4-30

Note Microsoft Word format is not available on UNIX platforms. If you select
Word format on a UNIX platform, the software uses RTF format instead.

Generate Report for example.c

You can generate reports for any verification results using the Polyspace
Report Generator.

To generate a verification report:
1 If your verification results are not already open, open them.
2 Select Run > Run Report > Run Report....

The Run Report dialog box opens.

Run Report |
Select Report {s)

CodingRules

DeveloperReview
Developer_WithGreenChecks

Quality

Browse...

Select Report Format
Output folder | C:\Polyspace'polyspace _project'Module_1\Result_1\Polyspace-Doc E]

Output format | RTF -

Run Report l [Cancel l

Review Verification Results

3 In the Select Report Template section, select Developer.rpt.

4 In the Output folder section, select the \polyspace project folder.
5 Select PDF Output format.

6 Click Run Report.

The software creates the specified report. When report generation is
complete, the report opens.

4-31

4 Review Verification Results

4-32

Check Compliance with
Coding Rules

5 check Compliance with Coding Rules

Check Compliance with Coding Rules

In this section...

“Tutorial Overview” on page 5-2

“Before You Start” on page 5-3

“Create New Module for Coding Rules Checking” on page 5-3
“Set MISRA C Checking Option” on page 5-10

“Select Coding Rules to Check” on page 5-11

“Exclude Files from MISRA C Checking” on page 5-14

“Run a Verification with Coding Rules Checking” on page 5-15
“Examine MISRA C Violations” on page 5-16

“Open MISRA-C Report” on page 5-19

Tutorial Overview

Polyspace software allows you to analyze code to demonstrate compliance with
established C or C++ coding standards (MISRA C 2004, MISRA C++:2008,
or JSF++:2005).2

Applying coding rules can both reduce the number of orange checks in your
verification results and improve the quality of your code. Coding rules are the
most efficient way to reduce orange checks.

To check compliance with coding rules, you set an option in your project and
then run a verification. Polyspace software finds the violations during the
compile phase of a verification. When you have addressed all coding rule
violations, you run the verification again.

For more information on the coding rules checker, see “Overview of Polyspace
Code Analysis”.

In this tutorial, you learn how to:

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

Check Compliance with Coding Rules

1 Create a module within your project.

2 Set an option for checking MISRA C compliance.

3 Select MISRA C rules to check.

4 Run a verification with MISRA C checking.

5 View coding rules violations using the Coding Rules perspective.

Before You Start

Before you start this tutorial, you must complete “Set Up Polyspace Project”
on page 2-2. For this tutorial, you use the folders from that tutorial.

Create New Module for Coding Rules Checking

® “Open Your Example Project” on page 5-3
e “Create New Module for MISRA C Checking” on page 5-4
e “Configure Text and XML Editors” on page 5-9

Open Your Example Project
For this tutorial, you modify the project in example project.cfg to include
MISRA C checking. You use the Project Manager perspective to modify the

project.
To open example project.cfg:

1 Select File > Open Project.

2 In the Open a Polyspace project file dialog box, navigate to
polyspace_project.

3 Select example project.cfg.

4 Click Open to open the file and close the dialog box.

5 check Compliance with Coding Rules

Create New Module for MISRA C Checking

A Polyspace project can contain multiple modules. Each of these modules can
verify a specific set of source files using a specific set of analysis options.

In this section, you create a third module to check coding rules compliance
for the example.c file.

To create a new module in example project:
1 In the Project Browser, select example_project [C].
I

2 Click the Create a new module icon in the Project Browser toolbar.

A new verification, Module 3, appears in the Project Browser.

5-4

Check Compliance with Coding Rules

Proiec 0 0

] .|ﬁ'|w|f l'||§|

E—}@ Source
Bﬁ sources

| example.c

|_| single_file_analysis.c
& @ Include
----- (3 C\Polyspace\polyspace_projectiincludes
&3 Module_1
-3 Source
E}ﬁ sources
- | example.c
EJ B Conflguratmn
. [example_project
B- B Result
; FHIE) Result_1 [Verification Completed]
--ﬁ Result_2 [Verification Completed]
=3 Madule 2
EJ 123 Source
=t 5 sources
i e | single_file_analysis.c
EI E‘ Cenfiguration
= [example_project
= E‘ Result
"a Result_1 [Verification Failed]
FE3 Result_2 [Verification Completed]
=03 Module_3

E‘ E‘ Cenfiguration
P . -4 example_project

3 In the Project Browser Source tree, right-click example.c, and select Copy
Source File to > Module_2

The example.c file appears in the Source tree of Module (2).

5-5

5 check Compliance with Coding Rules

-IEJ|[§‘I| |+ & @

=~} example_project [C]
£+ Source
EE3 sources
=|_, example.c
|_, single_file_analysis.c
=3 B Include
----- (3 Ch\Polyspace\polyspace_projectiincludes
£+ Module 1
-3 Source
Elﬁ sources
b] example.c
EJ @ Configuration
[example_project
B3 Result
--ﬁ Result 1 [Verification Completed]
--ﬁ Result_2 [Verification Completed]
B Module 2
-3 Source
. B sources
o | single_file_analysis.c
EJ @ Configuration
| [example_project
=- @ Result
"ﬁ Result_1 [Verification Failed]
[Result_2 [Verification Completed]
N o 3
B@ Source
E E\‘"ﬁ SOUrCes
o | eample.c
9 @ Configuration
[example_project

N My Result

4 Right-click the Configuration folder in Module_ 3, and select Create New
Configuration.

5 Right-click the example project_1 configuration, and select Set as
Active Configuration.

The Project Browser now looks like the following figure.

Check Compliance with Coding Rules

=" Project Browser

T RIEEIE

B@ example_project [C]
£+ Source
E!ﬁ sources
|_| example.c
S single_file_analysis.c
Elﬁ Include
¢ I C\Polyspace\polyspace_projectiincludes
B [Module_1
a B Source
. EMES sources
o | example.c
9 B Configuration
[T example_project
=8 2 Result
.ﬁ Result 1 [Verification Completed]
--ﬁ Result_2 [Verification Completed]
B Module 2
-3 Source
| BB sources

- o | single_file_analysis.c
B Configuration
[example_project
B3 Result
"ﬁ Result_1 [Verification Failed]
[Result_2 [Verification Completed]
=5 Module_3
= 5 Source
. BE3 sources
o | example.c
9 B Configuration
5 [example_project

E example_project_1

5 check Compliance with Coding Rules

5-8

Check Compliance with Coding Rules

Configure Text and XML Editors

Before you check MISRA rules, configure your text and XML editors in the
Polyspace Preferences dialog box. Configuring text and XML editors allows
you to view source files and MISRA reports directly from the Results Manager
perspective.

To configure your text and .XML editors:

1 From the Polyspace verification environment toolbar, select
Options > Preferences.

2 In the Polyspace Preferences dialog box opens, select the Editors tab.

-~ Polyspace Preferences @I
Tools Menu | Review statuses | Assistant configuration I Miscellaneous | Character encoding -
Server configuration | Results folder | Editors | Generic targets
¥ML editor configuration

m

Spedify the full path to a XML editor or use the browse button.

0]

¥ML Editor: C:\Program Files (x86) WMicrosoft Office\Office 12\EXCEL.EXE
Text editor configuration
Specify the full path to a text editor or use the browse button.

Text Editor: C:\Program Files\Windows NT\Accessorieswordpad exe

©)

Spedify the command line arguments for the text editor.
Arguments: Wordpad « | |SFILE

4 1 »

| oK || Apply || Cancel

3 Specify an XML editor to use to view MISRA-C reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

4 Specify a Text Editor to use to view source files from the Project Manager
logs. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5-9

5 check Compliance with Coding Rules

5-10

5 From the Arguments drop-down list, select your text editor to
automatically specify the command-line arguments for that editor.

® Emacs

* Notepad++ — Windows only
® UltraEdit

® VisualStudio

e WordPad — Windows only

® gVim

If you are using another text editor, select Custom from the drop-down list,
and specify the command-line arguments for the text editor.

6 Click OK.

Set MISRA C Checking Option

You set up MISRA C checking by setting an analysis option and then selecting
the rules to check. To set the MISRA C checking option:

1 In the Project Browser, select the example project_1 configuration.

2 Select the Configuration > Coding Rules & Code Complexity Metrics
pane.

3 Select the Check MISRA C rules check box.

4 Use the corresponding drop-down list to specify the rules. For example,
select required-rules.
5 You can also specify the following options:

¢ Files and folders to ignore — Files, if any, to exclude from the
checking.

e Effective boolean types — Data types that you want Polyspace to
consider as Boolean.

¢ Allowed pragmas — Undocumented pragma directives for which rule
MISRA C 3.4 must not be applied.

Check Compliance with Coding Rules

Select Coding Rules to Check

You must have a rules file to run a verification with MISRA C checking. You
can use an existing file or create a new one. You create a new rules file for
this tutorial by:

® “Creating a MISRA C Rules File” on page 5-11
e “Set All Rules to Off” on page 5-13
e “Selecting Rules to Check” on page 5-13

Creating a MISRA C Rules File

To open a new rules file:

1 In the Project Manager perspective, select the Configuration > Coding
Rules & Code Complexity Metrics pane.

2 Select the Check MISRA C rules check box.
3 From the corresponding drop-down list, select custom.

4 Click the Edit button. The New File dialog box opens, displaying a table
of rules.

5-11

5 cCheck Compliance with Coding Rules

File
o d
Set the following state to all MISRA C rules : [Em)r =
Rule Error Warning Off Comment
MISRA C rules -
~Number of rules by mode: 0 130 12

[#-1 Envirenment

[=}-2 Language extensions

~2.1 Assembly language shall be encapsulated and isclated

~2.2 source code shall only use /* ... */ style comments

2.3 The character sequence /= shall not be used within a comment

2.4 Sections of code should not be 'commented out' ()] @ [not implemented

H-3 Documentation
H-4 Character sets
H-5 Identifiers

H-6 Types

H 7 Constants

11

t-8 Declarations and definitions
H-9 Initialization

H-10 Arithmetic type conversions

[
£
£
E
£
I
£
£
[#11 Pointer type conversions
[+-12 Expressions
£
[
£
£
£
£
£
£
[E

H-13 Control statement expressions

H-14 Control flow

H-15 Switch statements
H-16 Functions

H-17 Pointers and arrays

H-18 Structures and unions

H-19 Preprocessing directives
H-20 Standard libraries
H-21 Run-time failures
ol 1 | »

4

ok || cancel |

5 For each rule, specify one of the following states.

5-12

Check Compliance with Coding Rules

State Causes the verification to ...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

The default state for most rules is Warning. The state for rules that have
not yet been implemented is Off. Some rules have a fixed state of Error,
which you cannot change.

6 Click OK.
7 Use the Save as dialog box to save your rules file.

Set All Rules to Off

In this tutorial, you select only a few rules. Therefore, first set the state of all
rules to Off. Later, you can select the specific rules that you want to check.

To set the state of all rules to Off:

1 In the New File dialog box, from the Set the following state to all
MISRA rules drop-down list, select Off.

2 Click Apply.

Selecting Rules to Check

To select the rules to check for this tutorial:

1 Expand the set of rules named 16 Functions.

2 Select the Error column for 16.3.

3 Expand the set of rules named 17 Pointers and arrays.

4 Select the Warning column for 17.4.

5-13

5 check Compliance with Coding Rules

The completed rules table looks like the following figure.

Rules Error Warning Off

MISRA C rules
~MNumber of rules by mode : 1 1 140
-1 Environment

-2 Language extensions

-3 Documentation

H-4 Character sets

+-5 Identifiers

t-6 Types

t|-7 Constants

+-& Dedarations and definitions

+-9 Initislisation

#--10 Arithmetic type conversions

--11 Pointer type conversions

12 Expressions

--13 Control statement expressions

-14 Control flow

15 Switch statements

16 Functions

---16.1 Functions shall not be defined with variable numbers of arguments.
---16.2 Functions shall not call themselves, either directly or indirectly.
--16.3 Identifiers shall be given for all of the parameters in a function prototy
--16.4 The identifiers used in the dedaration and definition of a function shall
--16.5 Functions with no parameters shall be dedared with parameter type w
--16.6 The number of arguments passed to a function shall match the numbey
--16.7 A pointer parameter in a function prototype should be dedared as poi
--16.8 All exit paths from a function with non-void return type shall have an &
--16.9 A function identifier shall only be used with either a preceding &, or wi
--16,10 If a function returns error information, then that error information sh
[=]--17 Pointer and arrays

--17.1 Pointer arithmetic shall only be applied to pointers that address an arr;
--17.2 Pointer subtraction shall only be applied to pointers that address elem
--17.3 =, ==, <, <= shall not be applied to painter types except where they
--17.4 Array indexing shall be the only allowed form of peinter arithmetic.
--17.5 The dedaration of objects should contain no more than 2 levels of pair
--17.6 The address of an ohject with automatic storage shall not be assigned
[+-18 Structures and unions -

»

el Rl el el el el el el el el Pl el el Pl P

m

H
H
H
H
H
]

m

5 Click OK to save the rules and close the window.
6 In the Save as dialog box, in the File, field, enter misrac.txt

7 Click OK to save the file and close the dialog box.

Exclude Files from MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the
project example project.cfg:

5-14

Check Compliance with Coding Rules

1 In the Project Manager perspective, select the Configuration > Coding
Rules & Code Complexity Metrics pane.

2 Select the Files and folders to ignore check box.

3 From the corresponding drop-down list, select custom.

4 In the File/Folder view, click i‘

5 Use the Open File dialog box to navigate to the folder
polyspace_project\includes.

6 Sclect the file math.h.
7 Click Open.
You see the file math.h in the File/Folder view.

Run a Verification with Coding Rules Checking

When you run a verification with the MISRA C option selected, the software
checks most of the MISRA C rules during the compile phase.?

To start the verification:

1 In the Project Browser, select your project configuration, for example,
example_project_1.

2 On the Project Manager toolbar, click the Run button b Run .

The verification fails because of MISRA C violations. You see messages in
the Full Log, and the Output Summary indicates that the verification
has detected MISRA errors. If a rule with state Error is violated, the
verification stops.

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

5-15

5 cCheck Compliance with Coding Rules

Examine MISRA C Violations
To examine the MISRA C violations:

1 In the Project Browser Result folder, double-click MISRA-C-report.xml,
which opens the Results Manager perspective.

2 On the Results Explorer toolbar, from the drop-down list of the first
filter, select Coding Rule violations.

olysp projes I [E
File Edit Run Review Options Window Help
L F=N=0=0" ‘ 9 ™ | LY | L) | w ﬂ| @'%ear:h: «| 4 [Case sensitive[T] Whole word ~ |EProje¢Manager . Results Manager
BEI| Tl forC < B T
4" Results Explorer - s
% T b ek pep——
Classification
Procedural entities ¥ |Line Col & |Detais -
B8 =xample_project (unp: 0/10, cov JiG8 i} |
example.c 4| 1 0 |example, ;|
| -
[#-__pol ce__stdstubs.c 1 a lyspa =
i : lustified
pol ce_main.c 1 0 lyspd
yepece Enter comment here...
. Review Statistics | ¥ Check Review
§ = Variable Access
G e 2
Variables
__polyspace__stdstubs.errno
‘< n r
| 2 Resuls Bxplorer | -2 Resuits Summary | 4 Source | 2 Orange Sources | % Data Range Configuration O | v
' 0% || Waiting for a command.

3 Click any violation.

5-16

Check Compliance with Coding Rules

-~ Polyspace - example_project C:\Polyspace\polyspace_project_c\Medule_2\Result_1 EI
File Edit Run Review Options Window Help

Beoode|sn|al

o B ‘ (7] ‘Seard’n l:l 4, [7] case sensitive[| Whole word ¥ ‘ | E,‘ Project Manager

HE i

o5 [Methodology for

- 4T S

[RemiEeee ek et K s] Gedee |

Coding Rule violations « '::ér Eﬂv ::r E,Y

é‘ mf 5= "Ew example.c / Painter_Arithmetic ~ MISRAC 17.4

Classification
Procedural entities j Line Col ﬂ Details 110 p+4;
. example_project (unp: 0/10, cov| 4 0 |MISRA C 17.4 (req) Array indexing shall be the only allowed form of pointer arithmetic, ‘ Liats
[H-example.c 41 1 0 mipl :
-
-Close_To_Zera () 50 |12 |0 mpl
--Non_Infinite_Loop () bl 1 |0 mple
E}-Pointer_Arithmetic) 310212 |0 kxampl
b - 1|10 | 7 req) Arr;
B review Statistics | v Check Review
7 MISRAC 17.4 1127 | 21 req) Arr
H o 7 - call Hierardt o
Lw MISRAC 17.4 . - . aa|Tcllewdy 35K
-RTE() 2355 |0 mpl Jaxamp\e‘ci‘ 408 b{,l'}<
~Recursian () 150 | 12 |0 fexampl int array[100]; Calls
Recursion_caller () 164 | 12 |0 mpl int i, *p = array; example Pointer_Arithmetic
Square_Root () 198 | 12 |0 ol P pst_stubs_0.get_bus_status B
" for{i = 0; i< 100; i+H) ¥ example.get_oil_pressure
~5quare_Reot_canv () 192 | 12 |0 my R b pst_stubs, 0.get_bus,_status -
Unreachable_Code () 212 | 12 | 0 fpxampl o= 0: =K w 3
-get_oil_pressure () 1] 21 | 11 |0 [exampl Tt [=
-__polyspace__stdstubs.c 1 0 | polysps 1 &' Y
__polyspace_main.c 1 0 | polyspa -
If(get bus statas() > 0) Varizbles
{
if(get_oil pressure() > 0) __polyspace__stdstubs.errna
< [3 4 = M r
- Results Explorer | 2 Results Summary | - Source | 4 Orange Sources | - Dats Range Configuration | « [b

0%

| operator > on type int 32

In the Check Details pane, you see a description of the violated rule and
the name of the file in which the violation was found. In the Source pane,
you see the source code that contains the violation.

The code uses a form of pointer arithmetic that is not allowed, a violation
of rule 17.4.

In the Source pane, right-click the highlighted code containing the
violation of rule 17.4. From the context menu, select Open Source File.
Before you can open source files, you must configure a text editor. See
“Configure Text and XML Editors” on page 5-9.

The example.c file opens in your text editor.

5-17

5 check Compliance with Coding Rules

S = | example.c - WordPad

Home View
m Courier New 11 A A

Paste B 7 U X x| A5

Clipboard Font Paragraph Editing
-g-I-l-I-2-I-3-I-4-I-5-I-G-I-?-I-S-I-g-l-lﬂ-l-ll-l-12-|-13-|-14-I-1.

= 32 Find

ah Replace

elect all

e

#include <math.h>
#include "include.h"

m

/* Internal function il

/* Needed for MISRA-rule 8.1 */

static int get oil pressure (void);
static void Close To Zero (void);
static int Non_Infinite Loop (woid);
static void Pointer Arithmetic (void);
static void Recursion (int* depth);
static void Recursion caller (void);
static woid Square Root conv (double alpha, float *beta pt);
static void Square Root (void);

static woid Unreachable Code (void);
extern int get_bus_ status(void);

static int get _oil pressure (void)

{

int *p;
volatile int wol i;
int 1, =, ¥;

p = (int *)0x32;
® = Yp;
pt+;
¥ = Ypi o

I I | 3

w00% (=) L) ®

5-18

Check Compliance with Coding Rules

5 Fix the MISRA violation and run the verification again. The results are the
same as those from the tutorial in “Run Verification” on page 3-2.

Open MISRA-C Report

After you check MISRA rules, you can generate a report containing all the
errors and warnings reported by the MISRA-C checker. Before you can open
a MISRA-C report, you must configure an editor. See “Configure Text and
XML Editors” on page 5-9.

To view the MISRA-C report:

1 Navigate to the folder that contains your coding rules report, for example,
C:\Polyspace\polyspace_project\Module 3\Result_ 1\Polyspace-Doc.

2 Double-click the coding rules report, for example,
example project CodingRules.rtf. The report opens in your selected

editor.

5-19

5 check Compliance with Coding Rules

5-20

A

analysis options 2-12

MISRA C compliance 5-10
ANSI compliance 3-9
AQT. See Automatic Orange Tester
Automatic Orange Tester

overview 4-28

C

call graph 4-12
call tree view 4-4
calling sequence 4-12
cfg. See configuration file
client 1-7 3-2
installation 1-12
verification on 3-20
coding review progress view 4-4 4-12
coding rules compliance 1-4
color-coding of verification results 1-4 to 1-5 4-5
compile log
Project Manager 3-11 3-22
Spooler 3-12
compile phase 3-9
compliance
ANSI 3-9
coding rules 1-4
MISRA C 5-1
configuration file
definition 2-2

D

default folder

changing location 2-6
division by zero

example 4-18
downloading

results 3-16

expert mode
filters 4-20

F

files
includes 2-9
source 2-9
filters 4-20
folders
includes 2-9
sources 2-9

H

hardware requirements 3-18
help
accessing 1-16

installation
Polyspace Client for C/C++ 1-12
Polyspace products 1-12
Polyspace Server for C/C++ 1-12

L

licenses
obtaining 1-12
logs
compile
Project Manager 3-11 3-22
Spooler 3-12
full
Project Manager 3-11 3-22
Spooler 3-12
stats
Project Manager 3-11 3-22
Spooler 3-12

Index-1

Index

viewing procedural entities view 4-4
Project Manager 3-11 3-22 product overview 1-4
Spooler 3-12 progress bar
Project Manager window 3-11 3-22
project
M creation 2-2 2-6
manual mode definition 2-2
selection 4-9 file types
use 4-7 configuration file 2-2
MISRA C compliance folders
analysis option 5-10 includes 2-3
checking 5-1 results 2-3
file exclusion 5-14 sources 2-3
rules file 5-11 opening 3-3
violations 5-16 saving 2-12
Project Manager
P monitoring verification progress 3-11 3-22
opening 2-4

Polyspace Client for C/C++
installation 1-12
license 1-12

Polyspace products for C
installation 1-12
licenses 1-12
related products 1-17
workflow 1-13

Polyspace products for C/C++
components 1-7

overview 2-4

perspective 2-4

starting verification on client 3-20

starting verification on server 3-9

viewing logs 3-11 3-22

window

progress bar 3-11 3-22

Project Manager perspective 1-7

overview 1-4 R
user interface 1-7 related products 1-17
Polyspace Queue Manager Interface. See Spooler Polyspace products for linking to Models 1-17
Poly.space Server for C/C++ Polyspace products for verifying Ada
installation 1-12 code 1-17
license 1-12 reports
Polyspace verification environment generation 4-28
opening 2-4 results
preferer'lces downloading from server 3-16
Project Manager opening 4-3
default server mode 3-9 report generation 4-28
server detection 3-18 reviewing 4-1

Index-2

Index

Results Manager perspective 1-7
call tree view 4-4
coding review progress view 4-4
opening 4-3
overview 4-3
procedural entities view 4-4
selected check view 4-4
source code view 4-4
variables view 4-4
rte view. See procedural entities view

S

selected check view 4-4

server 1-7 3-2
detection 3-18
information in preferences 3-18
installation 1-12 3-18
verification on 3-9

source code view 4-4

Spooler 1-7
monitoring verification progress 3-12
removing verification from queue 3-16
use 3-12
viewing log 3-12

T

target environment 2-11
troubleshooting failed verification 3-17

V)

unreachable code
example 4-16

\"

variables view 4-4
verification
Ada code 1-17
C/C++ code 1-4
client 3-2
compile phase 3-9
failed 3-17
monitoring progress
Project Manager 3-11 3-22
Spooler 3-12
phases 3-9
results
color-coding 1-4 to 1-5
opening 4-3
report generation 4-28
reviewing 4-1
running 3-2
running on client 3-20
running on server 3-9
starting
from Project Manager 3-2 3-9 3-20
stopping 3-24
troubleshooting 3-17
with MISRA C checking 5-15
Verification
stopping 3-23

w
workflow
basic 1-13
in this guide 1-14

Index-3

	toc
	Introduction to Polyspace Products for Verifying C/C++ Code
	Product Description
	Polyspace Client for C/C++
	Key Features

	Polyspace Server for C/C++
	Key Features

	Polyspace Verification
	Overview of Polyspace Verification
	The Value of Polyspace Verification
	Enhance Software Reliability
	Decrease Development Time
	Improve the Development Process

	Product Components
	Polyspace Verification Environment
	Project Manager Perspective
	Results Manager Perspective

	Other Polyspace Components
	Polyspace Queue Manager Interface (Polyspace Spooler)
	Polyspace Metrics Web Interface

	Install Polyspace Products
	Find the Installation Instructions
	Obtain Licenses for Polyspace Software

	Polyspace Software Workflow and Tutorials
	Basic Workflow
	Tutorials

	Additional Information and Support
	Product Help
	MathWorks Online

	Related Products
	Polyspace Products for Verifying Ada Code
	Polyspace Products for Linking to Models

	Set Up a Polyspace Project
	Set Up Polyspace Project
	Tutorial Overview
	What Is a Project?
	Prepare Project Folders
	Open Polyspace Verification Environment
	Create a New Project to Verify the Example C File
	Open a New Project
	Specify Source Files and Include Folders
	Specify Target Environment
	Specify Analysis Options
	Save the Project

	Run a Verification
	Run Verification
	Tutorial Overview
	Before You Start the Tutorial
	Prepare for Verification
	Open the Project
	Specify Source Files to Verify
	Check for Compilation Problems

	Start Server Verification from Project Manager
	Start the Verification
	Monitor Verification Progress
	Remove Verification Results from the Server
	Troubleshoot a Failed Verification

	Start Client Verification from Project Manager
	Start the Verification
	Monitor the Progress of the Verification
	Complete Verification
	Stop the Verification Before Completion

	Review Verification Results
	Review Verification Results
	Tutorial Overview
	Before You Start
	Open Verification Results
	Open Results Manager perspective
	Open Verification Results

	Explore Results Manager perspective
	Overview
	Review the Results Explorer Tab

	Review Results
	What Are Review Levels?
	Display All Checks
	Review All Checks
	Review Additional Examples of Checks
	Filter Checks
	Example: Filter Coding Rule Violations
	Example: Filter IRV Checks
	Example: Filter Green Checks

	Review Results Systematically
	Review Checks at Level 0
	Review Checks at Levels 1, 2, and 3
	Review Checks Progressively

	Automatically Test Unproven Code
	Generate Reports of Verification Results
	Polyspace Report Generator
	Generate Report for example.c

	Check Compliance with Coding Rules
	Check Compliance with Coding Rules
	Tutorial Overview
	Before You Start
	Create New Module for Coding Rules Checking
	Open Your Example Project
	Create New Module for MISRA C Checking
	Configure Text and XML Editors

	Set MISRA C Checking Option
	Select Coding Rules to Check
	Creating a MISRA C Rules File
	Set All Rules to Off
	Selecting Rules to Check

	Exclude Files from MISRA C Checking
	Run a Verification with Coding Rules Checking
	Examine MISRA C Violations
	Open MISRA-C Report

	Index

